

VVVsssaaammmEEExxx[[[tttrrreeemmmeee]]]
The Original “un-database”

 (With SHA+ Encryption)

Reference Manual

Feburary 2011

Windows & Linux Edition

Software Source

PO Box 23306

San Jose, CA 95153

United States of America

Email

software_src@earthlink.net

Web

www.1-software-source.com

VsamEx[treme] is a copyrighted product for software development

distributed under license only. Any use of VsamEx[treme]or any of

its components constitutes acceptance of the terms and conditions

included in the VsamEx[treme] License Agreement and its Limited

Warranty as described in this Manual.

Limited Warranty

Software Source provides the VsamEx[treme] software and accompanying materials with the

following limited warranty:

When used in accordance with instructions, Software Source warrants this product against any
defects due to faulty materials or workmanship, for a period of sixty days from the purchase
date. If Software Source receives notification within this warranty period of defective materials or
workmanship, and determines that such notification is correct, then Software Source will replace
the defective product distribution and/or documentation at no charge. This warranty does not
cover damage due to accident, abuse, misuse, or improper installation of the product. Software
Source authorizes no other warranty, written or oral, and there are no implied warranties,
including, but not limited to, the implied warranties of merchantability and fitness for a particular
purpose. In no event will Software Source be liable for any damages, including any general,
special, incidental, indirect, exemplary, or consequential damages arising out of the use, misuse,

or inability to use the VsamEx[treme]product. The entire and exclusive liability and remedy

for breach of this Limited Warranty shall be limited to replacement of defective product
distribution and/or documentation and shall not include or extend to any claim for or right to
recover any other damages, including, but not limited to, loss of profit, data, or use of the
software, or special, incidental, or consequential damages or other similar claims, even if
Software Source has been specifically advised of the possibility of such damages; in no event,
however, will Software Source's liability exceed the actual amount paid for the product.

NOTICE:

ANY USE OF THIS PRODUCT IMPLIES AGREEMENT WITH THE TERMS OF THIS

WARRANTY! IF YOU DO NOT AGREE TO THESE TERMS PRIOR TO USING THIS

PRODUCT, PLEASE RETURN IT TO RECEIVE A FULL REFUND OF ITS PURCHASE

PRICE.

Our Special Thanks for contributions to this project go to:

 Jay J. Falconer at Bitwise Software International, Inc., http://www.shoppingQ.com, for
his help in testing VsamEx for Linux, his many suggestions and his creation of a
VsamEx C++ class wrapper that ships with the product.

 Mike Whittingham at Chaos Software, Inc., http://www.chaossoftware.com, for his
long time support, kind critical comments and meaningful suggestions.

 Visit their websites to see real world applications of VsamEx[treme] and its

predecessor VB/ISAM!

 Tony Altwies

 Software Source

 __

2 Email: software_src@earthlink.net Internet: www.1-software-source.com 2

Software Source . PO Box 23306 . San Jose, CA 95153

TABLE OF CONTENTS

Limited Warranty .. 1

TABLE OF CONTENTS ... 2

Copyright Notice and Trademarks .. 4

Software License Keys... 4

FUNCTIONAL DESCRIPTIONS ... 5

VsamAddField .. 5

VsamBOF ... 7

VsamCancel ... 8

VsamClose ... 9

VsamCsvDefMap ..10

VsamCsvWriteRec ..11

VsamCreate ...12

VsamDelete ...15

VsamDeleteDict ...16

VsamDeleteField..17

VsamEncrypt ...18

VsamEnumAttribValues ..19

VsamEnumFieldAttrib ...20

VsamEOF ..21

VsamFetchField ...22

VsamFlush ...24

VsamFreeRec ..25

VsamGet ..26

VsamGetWithLock ..33

VsamGetFieldAttribute ..34

VsamInfo ...35

VsamKill ...36

VsamLock ...37

VsamMakeMap ...38

VsamMovePtr ..39

VsamOpen ...40

VsamPut ..43

VsamPutWithUnlock ...44

VsamOptimisticUpdate ..45

VsamReadDict...46

VsamRebuild ...47

VsamReturnCode...48

VsamSearch ...49

 __

3 Email: software_src@earthlink.net Internet: www.1-software-source.com 3

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSetDictBof ..53

VsamSetDictEof ..54

VsamSetFieldAttribute ...55

VsamSetFieldToNull..57

VsamStoreField ...58

VsamUnlock ..59

VsamVal ..60

VsamWriteDict ..62

BATCH API .. 63

VsamBatchCancel ...63

VsamBatchCreate ..64

VsamBatchCommit..65

VsamBatchErrors...66

VsamBatchStatus ...67

APPENDIX ... 68

APPENDIX - A - SUPPORTED FIELD TYPES ...68

APPENDIX - B - NORMAL ERROR CODES ..69

APPENDIX - C - EXTENDED ERROR CODES ..70

 __

4 Email: software_src@earthlink.net Internet: www.1-software-source.com 4

Software Source . PO Box 23306 . San Jose, CA 95153

LEGAL NOTICES Software license Keys

Copyright Notice and Trademarks

VsamExt[treme] Copyright  1992 - 2009 by Software Source; all rights reserved. VsamEx[treme]

is a proprietary computer software product provided by its copyright holder, Software Source; both the

software and its documentation are copyrighted, and you may not copy either except as expressly provided

in the VsamEx[treme] Software License. VsamEx[treme] is a trademark of Software Source.

VB/ISAM is a related product, also a trademark of Software Source, Copyright  1992 - 2009,

requiring a separate license from Software Source. Microsoft and MS-DOS are registered trademarks

of Microsoft Corporation. Windows and Visual Basic are trademarks of Microsoft Corporation.

Software License Keys

VsamEx[treme] Libraries, License Keys, software, and documentation are the sole property of

Software Source. Said property is licensed not sold. Software Source retains sole title and rights to all

said property except rights specifically granted to others by Software Source. You may purchase and

register rights to use a License Key directly from Software Source. Software Source grants licenses so

purchased for the exclusive use with VsamEx for the purpose of software development, provided all of

the following conditions are met:

1. Only one person at a time on one machine may use a particular License Key for the purpose of

developing applications linked to VsamEx[treme].

2. You must use a License Key provided to you by Software Source.

3. You must register the transfer, if any, of the License Key with Software Source.

4. You may not enable unregistered use of VsamEx[treme] in a development environment.

5. You may not use a License Key already registered to someone else.

6. Software Source must have a record of originally issuing the License Key.

As long as all of the above conditions are met, you are expressly granted the rights to copy, transfer, and

distribute your applications linked with the VsamEx[treme] Library or DLL, as part of the software

you develop using VsamEx[treme] without Royalty.

 __

5 Email: software_src@earthlink.net Internet: www.1-software-source.com 5

Software Source . PO Box 23306 . San Jose, CA 95153

FUNCTIONAL DESCRIPTIONS

VsamAddField

short VsamAddField (

 LONG Datasetnumber, LPSTR lpFieldName,

 LPSTR lpFieldType, WORD wDimension,

 BOOL IsIndex, WORD wWidth,

 LPSTR lpJust, LPWORD lpFieldNumber)

Description: Add a new Data class field description to a dataset.

Records in a dataset may be thought of as being made up of attribute values called fields.

When a Dataset is created, it initially contains one Data class field definition; the “Primary”

key field definition (see VsamCreate). All records in a dataset are physically made up of

Data class fields. Fields are sparse and records do not need to contain all fields. As a

minimum, a record must contain a Primary key field. This function allows users to define

additional fields. Fields may be added to the dataset at any time. Records that do not contain

a field will not return values for that field when requested (see VsamFetchField).

Arguments: Initial field attributes

DatasetNumber&: The reference number returned by VsamOpen.

lpFieldName$: The Field Name as a string. You may optionally specify the field

number as “%n” where n is the string value of the field number.

lpFieldType$: The Field Type as a string ($,%,&,#,Cf.w).

 Where:

 “$” = String (Variable length)

 “%” = Integer (2 byte numeric)

 “&” = Long (4 byte numeric)

 “!” = Single (4 byte Floating)

 “#” = Double (8 byte Floating)

 “@” = Currency
1
 (8 Byte numeric)

 “Cf.w” = Compound
2
 (Concatenated strings)

 1. Windows Only.

 2. Automatically sets this field as an index field.

 See the Supported Field Types section

 __

6 Email: software_src@earthlink.net Internet: www.1-software-source.com 6

Software Source . PO Box 23306 . San Jose, CA 95153

VsamAddField

 Examples:

 “C5.3:6.10” field 5 for 3 bytes plus field 6 for 10 bytes.

 “C7:12.20” all of field 7 plus field 12 for 20 bytes.

*wDimension%: For numeric fields, this indicates the number of array elements in

this field. The maximum number is 65500/ value size. So for

LONG‟s, the max is 65500/4 = 1625 elements. (Remember:

maximum record size is 65500).

 (Currently only 1 is allowed)

isIndex%: Boolean - TRUE if this field is an index field. A Compound

definition will set this attribute to TRUE, regardless of what is set

in this parameter.

wWidth%: Field width (user attribute default = 255).

lpJust$: Field justification.

 Where: “L” = Left; “R” = Right; “C” = Center

 lpJust and wWidth do not affect the raw record data. They are only

intended as reference for building print records.

lpFieldNumber%: The field number assigned is returned in this parameter. Once The

system reserves this field number, it will not be assigned to any

other field until this field has been “Purged”.

* This parameter is intended for future use and only 1 dimension is support for now.

Remember, VsamEx maintains a separate, independent table entry for each index field.

Index pointers, including the Primary index pointer, may be moved independent of one

another and do not interfere with each other. However, any add or change to a field

definition will cause all index pointers to be reset and undefined until re-established by a

VsamGet, BOF or EOF operation! This applies to Dictionary index pointers as well.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_NO_ROOM – No room left for field definitions

 All field definitions and their attributes must fit inside 65530 bytes.

VIS_BAD_PARAMETER_VALUE – The field type is not legal

VIS_ALREADY_EXISTS – The field definition already exists

 __

7 Email: software_src@earthlink.net Internet: www.1-software-source.com 7

Software Source . PO Box 23306 . San Jose, CA 95153

VsamBOF

short VsamBOF (

LONG Datasetnumber, LPSTR Index)

Description: Sets the file pointer in a specified index to BOF: Before the First entry in the

index, if any.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Index$: To select the primary index, use “%0” or “Primary”. To select a secondary index,

use the Field name or Field number in quotes preceded by the “%” symbol. (see the

VsamAddField function description).

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

 __

8 Email: software_src@earthlink.net Internet: www.1-software-source.com 8

Software Source . PO Box 23306 . San Jose, CA 95153

VsamCancel

short VsamCancel (LONG DatasetNumber)

Description:

This Function will cancel any currently active VsamMovePtr operation on the dataset

specified. Then use VsamGet/XCURRENT to determine the location of the pointer.

Arguments:

DatasetNumber&: The reference number of the dataset returned by VsamOpen.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

 __

9 Email: software_src@earthlink.net Internet: www.1-software-source.com 9

Software Source . PO Box 23306 . San Jose, CA 95153

VsamClose

short VsamClose (LONG DatasetNumber)

Description: Closes an open VSAM dataset.

» Caution: if you make any changes to a dataset (with VsamPut, VsamDelete, or

VsamWriteDict in non-shared modes), you must call VsamClose before ending your

program; if you don't, the last change you made to the dataset may not be saved -- even

though the system later closes the files. For performance reasons, VsamEx doesn't flush its

private memory buffer to disk, while in non-shared modes, until you close the dataset.

(See the VsamFlush function description.) Because closing datasets is so important, we

recommend that you place your VsamClose calls in the code section where they'll always

be executed no matter how your program ends.

The other alternative is to use a shared mode, in which case buffers are always flushed!

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_HANDLE – The dataset handle does not belong to VsamEx.

VIS_DOS_ERROR – An operating system error occurred

VIS_DISK_ERROR – A problem with one of the disk files was encountered

 __

10 Email: software_src@earthlink.net Internet: www.1-software-source.com 10

Software Source . PO Box 23306 . San Jose, CA 95153

VsamCsvDefMap

short VsamCsvDefMap (LONG DatasetNumber,

LPSTR Fname)

Description: Initalize Csv Loader by defining a CSV field to Vsam Field mapping.

Arguments:

DatasetNumber&: The reference number of the dataset returned by VsamOpen.

Fname$: The name of the “.cmf” file that contains the import mappings. The contents are

as follows:

CSV HEADER Comma separated field names,

PRIMARY KEY MAPPING “Primary” Must be the name of the Rec key.

VSAM FIELD NAME and MAPPING All subsequent Vsam fields that get CSV

 Mappings.

.

.

Example: Line 1 is always assumed to be the CSV Header Specification.

“Last Name”,”First Name”,“Country”,”City”,”Street Name”,”House Number”,”Resident”

Primary,40=Last Name,”_”,First Name”,”_”,Country,”_”,Resident:%02d"

 Fields may be concatenated with literal delimiters or formatted text

 Field Width for display may be defined i.e. “40”.

Country,20=Country

City,10=City

Street Name,35=Street Name

House Number,5=House Number:%04d

Resident,5=Resident:%02d

Here we have defined Vsam records consisting of the Key (Primary) formed from each

CSV field specified along with a formatting string. Each field in Vsam is named along with

its display width and the corresponding CSV fields that it is produced from.

Function return codes:

VIS_OK - Function call completed successfully

 __

11 Email: software_src@earthlink.net Internet: www.1-software-source.com 11

Software Source . PO Box 23306 . San Jose, CA 95153

VsamCsvWriteRec

short VsamCsvWriteRec (LONG DatasetNumber,

LPSTR CsvInputData

WORD Mode)

Description: Write a Vsam Record to an open Dataset initialized from the

VsamCsvDefMap function. VsamCreate may be used to create the dataset.

Arguments:

DatasetNumber&: The reference number of the dataset returned by VsamOpen.

CsvInputData$: A single data line from a CSV style file where fields are separated by

commas (,).

1. The data lines may be quoted using Double quote (“). Beginning and ending quotes

will be removed.

2. If a field does not begin with a Double Quote (“) the field will end when the first

comma (,) is encountered.

3. If a field begins with a Double Quote (“), commas (,) may be present inside the field.

4. A Double Quote in the field may be indicated by using two Double Quotes in a row

(“”).

5. In a Quoted field, after resolving all Double Quote pairs (“”), the field ends at the

next Double Quote (“). All data until the next comma (,) is ignored .

Mode%: How records will be written with duplicate keys.

1. Mode = 0 return UPDATE_VILOATION if record is already present with the

specified Key, i.e. ADD_ONLY.

2. Mode = 1 indicates that if a duplicate key exists, the key for the current record will be

appended with a numeric sequence number i.e., in the form “-%04d”. The process

will increment the sequence number and continue until an UPDATE_VILOATION is

not encountered.

3. Mode = 2 indicates that the record data with that key will be overwritten, i.e.

ADD_OR_REPLACE.

Function return codes:

VIS_OK - Function call completed successfully

 __

12 Email: software_src@earthlink.net Internet: www.1-software-source.com 12

Software Source . PO Box 23306 . San Jose, CA 95153

VsamCreate

short VsamCreate(LPSTR DatasetName,

LONG GroupSize,

LPSTR Encrypt)

Description: Creates a new VsamEx dataset, establishing its default “Primary” field

definition. The dataset remains unopened.

Arguments:

DatasetName$: The name you want for the new dataset, optionally including a full

pathname. VsamEx will create two files: DatasetName$.VOD, and DatasetName$.VOM.

If you include an extension, the first two chars will be used to create dataset extensions; i.e.

“mydata.nxt” would produce “.nxd”, “.nxm”, etc., instead of the default “.vod”, and

“.vom”, etc.

GroupSizet$: This parameter will establish the initial size of each dataset group. It should

always be defined in increments of 1024. We typically use 1024, 2048, 4096, 8192, 16384

and 32768 (maximum size). Experimental results show that 2048 is the best choice in most

environments (and default value) for maximum performance.

NOTE:

The Group defines the smallest unit of data moved between the storage media and low

level VsamEx routines. This is true even in networked systems. This number is important

in that it also determines the maximum size that a dataset can grow to. To calculate the

maximum extent your dataset can grow to, simply multiply the maximum number of

groups (65,530) by the size of each group.

 __

13 Email: software_src@earthlink.net Internet: www.1-software-source.com 13

Software Source . PO Box 23306 . San Jose, CA 95153

VsamCreate

For example: A Group size of 8192 will yield a maximum dataset size of 536,821,760.

Once established, Group Size cannot change except as a consequence of rebuilding the

dataset using the VsamRebuild function. Of course, a more primitive and somewhat slower

way would be to create a new dataset and write a little program to read records from the old

dataset and put them back into the newer dataset. This method will still not create a dataset

as compact, or as fast as is done in VsamRebuild.

Encrypt$: This key will enable Dataset Encryption. It may be any arbitrarily long string of

characters (usually printable) that does not include character 0). If the Encryption key is

NULL, then no encryption is performed. Once a dataset has been created with an

Encryption Key, VsamOpen will only open the dataset properly if the exact same key is

passed to it.

While the actual encryption key is not stored anywhere, the results of using an invalid key

are not always predictable! When the create function was called, various critical dataset

information was encrypted using the key passed at that time. When the VsamOpen function

is called, the same critical information required to access the dataset must be decrypted

before anything meaningful can be done. Therefore, the same Encryption key must be used

in both cases.

Encryption is done using a modified ultra high speed Secure Hashing Algorithm (SHA).

The cost in performance can vary depending on the record size and group size. We have

estimated it to be approximately 4% loss in performance when using encryption. If you

loose your key, the probability is very high that your data will not be recoverable!!

* Even we at Software Source, with our ultra fast quark computers and special

gluon grease, have found it necessary to travel back in time in order to recover

lost encryption data! So far, the only individual we know of that can afford

these services works at Microsoft!

 __

14 Email: software_src@earthlink.net Internet: www.1-software-source.com 14

Software Source . PO Box 23306 . San Jose, CA 95153

VsamCreate

Encryption/Decryption is performed in such a way that VsamEx data moves from host to

client and back, fully encrypted even over LAN and WAN.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_PARAMETER_VALUE - Invalid GroupSize or no DataSet Name

VIS_ALREADY_EXISTS Try another DatasetName$.

VIS_DOS_ERROR - Could not create at least one of the files.

VIS_OUT_OF_MEMORY – Failed to create the “Primary” field

VIS_DISK_ERROR – Operating system error or hardware failure

VIS_OUT_OF_FILE_HANDLES – Windows OS Error

Example:

 int rc, grp_size;

 grp_size = 8192;

 rc = VsamCreate(“MyDataset”, grp_size, "MyEncryptionKey");

 show_status("Create", rc);

 __

15 Email: software_src@earthlink.net Internet: www.1-software-source.com 15

Software Source . PO Box 23306 . San Jose, CA 95153

VsamDelete

short VsamDelete(LONG DatasetNumber,

 LPSTR PrimaryKey)

Description: VsamDelete finds a record by primary key lookup and deletes it. Secondary

Indexes are automatically updated as required. This does not reposition any index pointers.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

PrimaryKey$: The key to be used as a record locator in the primary index.

Function return codes:

VIS_OK - Function call completed successfully

VIS_NOT_FOUND - The primary-index lookup was unsuccessful

VIS_ACCESS_DENIED - The dataset is not open for READ_WRITE access

VIS_INVALID_KEY - The lookup key value you supplied was either null (0 bytes long);

was longer than 252; or contained a binary 0 [NULL] or 1 [Ctrl-A]. Nothing was done!

VIS_DISK_ERROR – The operating system reported a file error

VIS_DATA_VALIDITY_CHECK – The dataset may be corrupted

 __

16 Email: software_src@earthlink.net Internet: www.1-software-source.com 16

Software Source . PO Box 23306 . San Jose, CA 95153

VsamDeleteDict

short VsamDeleteDict (LONG DatasetNumber,

 LPSTR DictKey)

Description: VsamDeleteDict will delete a dictionary record with the specified key.

DatasetNumber&: is the same value returned from VsamOpen.

DictKey$: key name of the Dictionary element being deleted.

VIS_OK - Function call completed successfully

VIS_BAD_HANDLE – The dataset handle does not belong to VsamEx.

 __

17 Email: software_src@earthlink.net Internet: www.1-software-source.com 17

Software Source . PO Box 23306 . San Jose, CA 95153

VsamDeleteField

short VsamDeleteField (LONG DatasetNumber,

 LPSTR FldName)

Description: This function will set the Deleted mode flag for a particular record field. This

field will no longer exist logically. While subsequent operations will treat any requests for

data from this field as being non-existent, the Dictionary defining element will remain in the

Dataset dictionary until a VsamRebuild operation has been completed. Once the rebuild is

complete, we will have removed this field from all records in the dataset. The physical

dataset field number for this field will now be available for re-use! Meanwhile, as records

are read and re-written, this field will be removed individually from records

DatasetNumber&: is the same value returned from VsamOpen.

FldName$: is the name of the record field being deleted.

NOTE: This sets the “Fdel” attribute to “T”. You can restore this field to

normal status by using the VsamSetFieldAttribute function and

specifying “F” as the value. Remember, any records written when this

attribute is “T” will have this field removed from their records prior to

storing them in the dataset. Resetting the value to “”F” will not recover

any of the removed fields in records written with “T” set.

VIS_OK - Function call completed successfully.

VIS_BAD_HANDLE – The dataset handle does not belong to VsamEx.

 __

18 Email: software_src@earthlink.net Internet: www.1-software-source.com 18

Software Source . PO Box 23306 . San Jose, CA 95153

VsamEncrypt

short VsamEncrypt (LPSTR lpSourceData,

 DWORD lData,

 LPSTR lpEkey,

 LONG CryptOpt,

 LPSTR lpResult,

 DWORD lResult)

Description: Encrypts a Source data string into AsciiHex or Decripts an AsciiHex string

into a Data string. The Data string may be any binary data block of length lData including

binary zero.

Arguments:

lpSourceData$: A pointer to the source input data buffer. For CryptOpt = 0 (Decrypt), this

buffer will contain AsciiHex and therefore must be exactly 2 times the

length of the lResult buffer. (lSourceData == 2 * lResult)

lSourceData&: The length of the data buffer in bytes.

 For CryptOpt = 1: lResult == 2 * lSourceData

 For CryptOpt = 0: lSourceDatat == 2 * lResult

lpEkey$: A string pointer to the Encryption key (zero terminated). The same key

must be use to both Encrypt and Decrypt the data.

CryptOpt&: 1 = Encrypt, 0 = Decrypt.

lpResult$: A pointer to the buffer to receive the output. For CryptOpt = 1 (Encrypt),

this buffer will receive AsciiHex Text and therefore must be exactly 2

times the length of lpSourceData. (lResult == 2 * lSoutceData)

lResult&: The length of the Result buffer in bytes.

 For CryptOpt = 1: lResult == 2 * lSourceData

 For CryptOpt = 0: lSourceDatat == 2 * lResult

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_PARAMETER_VALUE - Buffer sizes do not correspond or eKey is NULL.

 __

19 Email: software_src@earthlink.net Internet: www.1-software-source.com 19

Software Source . PO Box 23306 . San Jose, CA 95153

VsamEnumAttribValues

short VsamEnumAttribValues (LONG DatasetNumber,

 WORD Option,

 LPSTR lpAttribName,

 LPSTR lpBuf,

 LPWORD lpBufSize,

 LPWORD lpwNumFields);

Description: Returns a list of attribute values, separated by commas, in a buffer.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Option%: 0 = ACTIVE fields; 1 = DELETED fields; 2 = ALL fields.

lpAttribName$: A string pointer to the Attribute name (zero terminated).

 See VsamSetFieldAttribute for a list of Predefined default attribute

names and descriptions. User attribute values may be enumerated as well.

lpBuf$: A pointer to the buffer to receive the attribute values separated by a

comma. Fields without a value for that attribute will return a null value.

Field Number (“Fnum” attribute) values will be returned in the form of

“%n” where n is the actual field number in ascii.

lpBufSize%: Size, in bytes, of the buffer pointed to by lpBuf$. If the buffer is too

small, it will contain the size, in bytes, needed.

lpNFields%: Pointer to a variable to return number of fields processed. This also

represents the number of fields returned - separated with the comma (“,”).

Function return codes:

VIS_OK - Function call completed successfully

VIS_NO_ROOM – Not enough buffer space to complete the operation

 __

20 Email: software_src@earthlink.net Internet: www.1-software-source.com 20

Software Source . PO Box 23306 . San Jose, CA 95153

VsamEnumFieldAttrib

short VsamEnumFieldAttrib (LONG DatasetNumber,

 LPSTR lpFldName,

 LPSTR lpBuf,

 LPWORD lpBufSize,

 LPWORD lpwNumAttribs);

Description: Returns a list of Attribute Names for a given field byFldName/FldNum,

separated by commas, in a buffer.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

lpFldName$: A pointer to the Field Name/Number (“ fieldname or %n”).

lpBuf$: A pointer to the buffer to receive the field attribute names separated with

a comma.

lpBufSize%: Size, in bytes, of the buffer pointed to by lpBuf$. If the buffer is too

small, it will contain the size, in bytes, needed.

lpNFields%: Pointer to a variable to return number of field attribute names found.

Function return codes:

VIS_OK - Function call completed successfully

VIS_NO_ROOM – Not enough buffer space to complete the operation

VIS_BAD_PARAMETER – Field does not exist

 __

21 Email: software_src@earthlink.net Internet: www.1-software-source.com 21

Software Source . PO Box 23306 . San Jose, CA 95153

VsamEOF

short VsamEOF (LONG DatasetNumber,

 LPSTR Index)

Description: Sets the file pointer in a specified index to its EOF position: After the last

entry in the index.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Index$: To select the primary index, use “%0” or “Primary”. To select a

secondary index, use the Field name or Field number in quotes preceded

by the “%” symbol. (see the VsamAddField function description).

Remember, VsamEx maintains separate table entries for each index. Pointers into the

dataset may move independent of one another and do not interfere with each other.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

 __

22 Email: software_src@earthlink.net Internet: www.1-software-source.com 22

Software Source . PO Box 23306 . San Jose, CA 95153

VsamFetchField

short VsamFetchField (LONG DatasetNumber,

LPGSTR Record,

LPSTR FieldName,

WORD Element,

LPSTR FieldType,

Void *FieldData,

WORD *LenData)

Description: This Function will fetch field data from the record data (Record GSTR) read

by VsamGet. The data will be stored in the memory pointed to by FieldData as the type

specified by FieldType.

Arguments:

DatasetNumber&: Is the same as was returned from VsamOpen.

Record: Is the GSTR handle returned by VsamGet function.

 * This is a structured pointer to an allocated memory buffer and it

belongs to your application. You must be sure to free it when you are

through with it. (Use VsamFreeRec)

FieldName$: Is the record field name (optionally “%n” to use the field Number). You

cannot use this function to retrieve the Primary (%0) field. Remember,

Primarys are returned as a separate parameter.

*Element%: Is the array element to return {0 – (n-1)}. -1 returns all values into an

array. (Only 1 element is supported at this time)

ord$:

FieldType$: Is a string value which defines the basic field type. I.E. "$" defines a

string, "%" defines an integer, etc.

FieldData$: Is a pointer to a buffer where the field data will be returned. If the type is

a string or an array of values, the actual number of bytes returned will be

stored in LenData. Its basic field type must be what is defined in the

FieldType$ parameter. Furthermore, it must correspond to the field

specified in Record$ that is defined above.

 __

23 Email: software_src@earthlink.net Internet: www.1-software-source.com 23

Software Source . PO Box 23306 . San Jose, CA 95153

VsamFetchField

LenData%: On input, this is the size of the FieldData$ buffer. On output, this is the

actual length in bytes of the data returned if the field is a string or an

array. If the data will not fit in the buffer, an error is returned and the

value stored here is the size in bytes of the buffer required, not including

the terminating zero.

* Designed for future enhancement - the Element% parameter will allow the user to

specify an element in an array of fields of the type. Optionally, -1 will return the entire array

of values or elements.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_NO_ROOM – The output buffer is too small the value returned in LenData%

indicates how large the buffer must be, not including the terminating zero.

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

Example:

 ldat = sizeof(dat);

 rc = VsamFetchField(hwmcb, gstrDat, “NameField”, 1, "$", dat, &ldat);

 __

24 Email: software_src@earthlink.net Internet: www.1-software-source.com 24

Software Source . PO Box 23306 . San Jose, CA 95153

VsamFlush

short VsamFlush (LONG DatasetNumber)

Description: "Flushes" the dataset's memory buffers to disk so that the most recent updates

you made using VsamPut, VsamDelete, etc. are written to the disk file - even if your

program crashes before it executes VsamClose on this dataset. VsamEx includes this

function for the cases in which your application can tolerate reduced performance as a

trade-off for saving your data. See VsamClose.

Arguments:

DatasetNumber%: The reference number returned by VsamOpen.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_DISK_ERROR – The Operating system detected a failure during the write operation.

 __

25 Email: software_src@earthlink.net Internet: www.1-software-source.com 25

Software Source . PO Box 23306 . San Jose, CA 95153

VsamFreeRec

short VsamFreeRec (LPGSTR lpRecord)

Description: Free the Memory buffer allocated by the VsamGet function for a data record.

(The memory space pointed to by a GSTR)

Arguments:

lpRecord&: The reference number returned by VsamOpen.

Function return codes:

VIS_OK - Function call completed successfully

 __

26 Email: software_src@earthlink.net Internet: www.1-software-source.com 26

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

short VsamGet (LONG DatasetNumber,

LPSTR Index,

WORD Options,

LPSTR Selector,

LPSTR RIndexEntry,

LPSTR RPrimaryKey,

LPGSTR *RRecord)

Description: Reads a record through an index access, either by key lookup or sequentially,

repositioning the selected index pointer as described in the FUNDAMENTALS -- USING

INDEXES section in the VsamEx User‟s Guide.

This is a powerful function that actually performs up to three operations in sequence, under

the control of a three-part Options parameter.

The first, and fundamental, part of the Options% parameter specifies the access mode --

how you'll move the index pointer. The four alternative keywords are: XLOOKUP,

XNEXT, XPREVIOUS, XCURRENT.

» There's a major distinction between the Lookup access mode and the other three access

modes (XNEXT, XPREVIOUS, XCURRENT). You can actually think of VsamGet as

two functions that work very differently. We originally designed VsamEx with a

"VsamFind" function for the lookup mode and a VsamStep function for the other modes,

but we decided to combine them into VsamGet.

Lookup access mode :

In lookup access mode, VsamGet repositions the selected index pointer according to your

Selector$ argument. In other words, VsamGet/lookup searches (seeks) that index for a

match of your Selector$ argument, and leaves the index pointer at a new location; the

previous position of the pointer doesn't matter, and is forgotten. You can think of the index

as a Rolodex file, the pointer as your finger, and the selector$ argument as the card-header-

name you're trying to find. The lookup ends with your finger either on a card headed by

that name (VIS_OK) or with your finger between cards, where a card with the lookup name

would be if it were there (VIS_NOT_FOUND).

 __

27 Email: software_src@earthlink.net Internet: www.1-software-source.com 27

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

To say this more formally: The lookup access mode uses the Selector$ argument as a

lookup key. If the lookup is successful, it moves the index pointer to the matching index

entry and (optionally) retrieves the corresponding data record. If there is more than one

matching index entry (possible only in the case of secondary indexes, not the primary

index), it will select the earliest one (i.e., the one whose corresponding primary key is first).

Alternatively, if it doesn't find any match of the Selector$ in the index, it returns

VIS_NOT_FOUND and leaves the index pointer positioned at the insertion point

("phantom entry") where that Selector$ entry would be if present.

next, previous, and current access modes:

By contrast, the other three access modes -- next, previous, and current -- move the selected

index pointer one step forward or backward (or for current, not at all), from wherever the

pointer had been positioned. You can think of a next access, for example, as the process of

simply moving your finger forward in the Rolodex by one card.

If the next/previous/current access is successful, meaning you didn't step "off the edge" to

EOF or BOF, and after the "step move" there is an index entry underneath the pointer,

VsamGet can then perform the operational service of comparing that encountered index

entry against your Selector$ argument. If you ask for a comparison, the function return

code tells you the result: VIS_OK means that your specified comparison test was "true".

The second part of the Options% parameter specifies whether or not to perform a

comparison, and if so, which kind of comparison to use. The eight alternative keywords

are: XEQ (equal to), XNOT (not equal to), XBEGINS (begins with), XLT (less than), XGT

(greater than), XLE (less than or equal to), XGE (greater than or equal to), XANY (accept

anything). Note that in the next, previous, and current access modes, the Selector$

argument has an entirely different purpose than in the lookup mode.

If the specified comparison fails, the function immediately returns VIS_NOT_FOUND.

This makes it convenient for the program to loop on VsamGet/Next While (or Until) it

returns VIS_OK (or VIS_NOT_FOUND) so you can easily process all duplicate keys (i.e.,

"Smith"), or move beyond or before a group of entries.

» Note: The comparison tests do NOT cause any further pointer movement; their sole

purpose is to make it easy for you to know when to stop stepping through an index. See the

coding examples at the end of this function description.

 __

28 Email: software_src@earthlink.net Internet: www.1-software-source.com 28

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

Record retrieval:

For all access modes, there is a final choice: Whereas VsamGet normally, as a default,

retrieves both the primary key and the data portion of the record, it will optionally retrieve

the primary key only, which is faster if that is all you need. Your application may, for

example, want to browse through one or more of the secondary indexes to accumulate a list

of primary keys for later use in actual record retrieval. Option keyword: XNO_DATA.

(The other choice is XGET_DATA, but that is the default, so you do not need to specify it.)

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Index$: To select the primary index, use “%0” OR “Primary”. Optionally, To

select a secondary index, use the field name or number (“%n”) for the

corresponding Index field (see VsamAddField). The field must have the

IsIndex field attribute set to true. This attribute is set for the “Primary”

field as a default during VsamCreate.

Options%: Is the sum of the three numbers that specify your choices for each of the

three phases of operation. The three operation phases are index access,

comparison (after next/previous/current access only, not lookup), and

record retrieval. The .h/.BAS files includes symbolic equivalents for the

option numbers as Global Constants; since these values are mutually

exclusive in their bit positions, you can “or” these symbolic components

with a "+" in VB, or “|” in C++ as follows:

 ..., AccessOption + CompareOption + RetrievalOption,...

 For example, you could specify the Options% argument as:

 (XNEXT | XBEGINS | XNO_DATA) (see tables below)

All three phases of operation have default values shown below. You do not have to specify

anything except non-default choices. For example, to specify a Next access without any

comparison tests, and with record retrieval into your Options% variable, just write

XNEXT.

If you want the defaults for all three phases, you may use the argument value 0 -- but we

recommend using XLOOKUP for clarity. The VsamGet function will return

VIS_BAD_PARAMETER_VALUE if you specify invalid combinations.

 __

29 Email: software_src@earthlink.net Internet: www.1-software-source.com 29

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

The following table lists both the numeric and symbol equivalent values for the components

of the Options% argument.

 Def Option

Phase ault Value Symbol Description

access > 1% XLOOKUP RIndex$=Select$ (default)

 2% XNEXT Get next RIndex$

 4% XPREVIOUS Get previous RIndex$

 8% XCURRENT Get current RIndex$

compare > 16% XANY OK for all RIndex$ and (default)

 Select$, no compares

 32% XEQ OK if RIndex$=Select$

 64% XBEGINS OK if Select$=left part of

 RIndex$

 128% XNOT OK if RIndex$!=Select$

 256% XLT OK if RIndex$< Select$

 512% XGT OK if RIndex$> Select$

 1024% XLE OK if RIndex$<= Select$

 2048% XGE OK if RIndex$>= Select$

Get > 4096% XGET_DATA Get both key and data (default)

 8192% XNO_DATA Get only the key

 When VsamGet is called, it returns the key and data, the record returned is a raw record

(GSTR) and is not decoded. Fields may then be extracted from it with VsamFetchField.

See the example shown in the VsamFetchField Function Description.

Since, if any phase of Option% is left blank, the default value is used, it is not necessary to

ever use XLOOKUP, XANY, or XGET_DATA. However, for application maintenance

purposes, explicit arguments are easier to understand than invisible ones.

Selector$: A zero terminated input argument used either as a lookup key into the

specified index (in Lookup access mode) or for comparison against the

retrieved index key (optionally, in Next, Previous, or Current access

modes). If you don't need it for either purpose -- that is, you're doing a

Next, Previous, or Current access without any comparison testing -- you

must still supply a place holder, such as the null string ("").

 __

30 Email: software_src@earthlink.net Internet: www.1-software-source.com 30

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

**NOTE: When searching using a compound index, use the 0x02 character as a

separator between compounded fields.

 Example:

 Strcpy(Selector, “John”); // First Name

 Strcat(Selector, “\x02”); // Compound Separator

 Strcat(Selector, “A”); // First letter of last name

RIndexEntry$: Is a pointer to a buffer of at least 255 characters that will receive the zero

terminated index key-entry found, if any. (Even if you don't need the key-

entry, you must still provide the pointer to a buffer "throwaway" string

variable to store it in.)

VsamGet will load a value into the string named in RIndexEntry$ under the following

circumstances:

 in lookup mode if VIS_OK;

 in Next, Previous, or Current mode if the initial index access resulted in an index key entry

under the index pointer, without regard to the results of comparison testing (if any).

RPrimaryKey$: Is a pointer to a buffer of at least 255 characters that will receive the

returned corresponding primary key – zero terminated. VsamGet will

load a value into this variable under the following circumstances:

 in lookup mode if VIS_OK

 in Next, Previous, or Current mode if the initial index access resulted in an index key entry

under the index pointer, and any specified comparison test was also successful.

RRecord: If the function succeeds and data is requested (not XNO_DATA),

VsamGet will store a GSTR handle that in itself points to the allocated

buffer containing the raw data record.

Note: Primary Keys are not part of the data record – they are always returned in an

independent parameter (RPrimaryKey$).

 __

31 Email: software_src@earthlink.net Internet: www.1-software-source.com 31

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

» Warning: VsamEx can't tell if you've specified insufficient buffer space for return

strings, so be careful; an error here could cause unpredictable behavior (like various parts

of your body falling off, or in some cases extraneous growth in undesirable places)!

Function return codes:

VIS_OK – The function call was successful!

VIS_NOT_FOUND - Either the initial access operation was unsuccessful -- in which case

the RIndexEntry$ and RPrimaryKey$ variables will not have been loaded with new values

-- or the specific type of access failed because:

XLOOKUP: The Selector$ value wasn't found in this index.

XNEXT: You tried to read beyond the last entry in this index.

XPREVIOUS: You tried to read before the first entry in this index.

XCURRENT: The current pointer position n this index was either

 at (index) BOF, at (index) EOF, or between entries.

Or you specified a Next/Previous/Current step-access with a comparison test, and the step

succeeded but the comparison test failed. In the latter case, the RIndexEntry$ argument will

have been loaded, but the RPrimaryKey$ and RRecord arguments will be unchanged.

VIS_BAD_DATASET_NUMBER – The dataset identifier is not valid!

VIS_INVALID_KEY - The Selector$ used as a lookup key was null; or was longer than

252 chars; or contained a binary 0x01byte. Nothing was done!

VIS_BAD_PARAMETER_VALUE - Options% or Index field was invalid!

VIS_OUT_OF_MEMORY – The return buffer is too small!

VIS_DISK_ERROR – The operating system has a problem with the dataset!

VIS_DATA_VALIDITY_CHECK - The dataset is corrupt and needs repair!

VIS_SEQUENCE_ERROR – An index is out of sort, the dataset needs repair!

NOTE: The GSTR returned is now the property of the calling program and must be

freed at some point by your application. The only exception is if you continue to call

VsamGet using the same GSTR pointer - VsamEx will internally free an old GSTR

pointer to data before allocating a new GSTR to replace the old one. If you do not want

to loose reference to the specific Raw record GSTR, you must move it (the GSTR

pointer) to another variable and store ZERO(NULL) at the Variables (RRECORD)

position so that VsamGet will allocate a new buffer.

 __

32 Email: software_src@earthlink.net Internet: www.1-software-source.com 32

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGet

Coding Illustrations:

(1)

 int rc;

 char key[256], rshkey[256], rkey[256];

 LPGSTR lpgstrDat = NULL;

 strcpy(key, “xyz”);

 rc = VsamGet(DsHandle,”Primary”, XLOOKUP, key, rskey, rkey, &lpgstrDat);

 show_record();

(2)

 while(rc == VIS_OK)

 {

 rc = VsamGet(DsHandle, ,”Primary”, XNEXT, key, rskey, rkey, &lpgstrDat);

 show_record();

 }

 if (*lpgstrDat)

 {

 FreeGstr(*lpgstrDat);

 *lpgstrDat = 0;

 }

 show_status("Read", rkey, rc);

 __

33 Email: software_src@earthlink.net Internet: www.1-software-source.com 33

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGetWithLock

short VsamGetWithLock (LONG DatasetNumber,

LPSTR Index,

WORD Options,

LPSTR Selector,

LPSTR RIndexEntry,

LPSTR RPrimaryKey,

LPGSTR *RRecord)

Description: Reads a record through an index access, either by key lookup or sequentially,

repositioning the selected index pointer as described in the FUNDAMENTALS -- USING

INDEXES section in the VsamEx User‟s Guide.

NOTE: This function operates exactly like VsamGet with the exception that it attempt to

lock the primary key of the record to be read. If the lock of the primary key fails the

function will not return the record and the return code will be that returned by an

unsuccessful VsamLock, usually VIS_ACCESS_DENIED.

This is faster than asking for the lock and then reading the record as two separate

operations.

 __

34 Email: software_src@earthlink.net Internet: www.1-software-source.com 34

Software Source . PO Box 23306 . San Jose, CA 95153

VsamGetFieldAttribute

short VsamGetFieldAttribute (LONG DatasetNumber,

LPSTR lpFld,

LPSTR lpAttName,

LPSTR lpBuf,

LPWORD lpBufSize)

Description: Retrieves the value of a specific Field attribute.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

lpFld$: The name of the dataset field.

lpAttName$: The name of the field attribute.

 Predefined Attributes:

 Field Name "Fnam" String Name of the field

 Field Number "Fnum" n - (Read Only!)

 Field Class "Fcls" [D] - Data (Read Only!)

 Field Type "Ftyp” [%,&,!,#,@,$,C] (Read Only!)

 Field Is an Index "Find" [T, F, P, D] – True, False, Partial or Disable

 See: VsamSetFieldAttribute for detailed description

 Field width "Fwid" field width in characters

 Field Just "Fjst" [L,C,R] – Left, Center, Right

 Field Is Deleted "Fdel" [T, F] - True, False

lpBuf$: Pointer to the buffer to return the attribute value in.

lpBufSize%: Length of the buffer. On Output, it is the size required.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

 __

35 Email: software_src@earthlink.net Internet: www.1-software-source.com 35

Software Source . PO Box 23306 . San Jose, CA 95153

VsamInfo

short VsamInfo (LONG DatasetNumber,

LPVSTATS VstatsStructure)

Description: Retrieves dataset parameters and statistics (see below).

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

VstatsStruct: The name of a variable into which VsamInfo will place the retrieved

information. The Type definition for VSTATS is included in the Vsam.h

file. The structure is as follows:

typedef struct tagVSTATS

 {

 LONG nrecords; // total number of records in the dataset including xref‟s

 // and dictionary records

 LONG grp_size; // Group size for this dataset

 LONG gps_used; // Groups used in this dataset

 LONG gps_unused; // Groups in this dataset that are unused

 // at the end of the dataset

 WORD max_key_len; // set to 252 in VsamEx datasets

 WORD num_fields; // number of fields defined in this database

 LONG nPrimRecords; // total number of Primary records in the dataset

 LONG reserved[3];

 } VSTATS;

typedef VSTATS FAR * LPVSTATS;

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

 __

36 Email: software_src@earthlink.net Internet: www.1-software-source.com 36

Software Source . PO Box 23306 . San Jose, CA 95153

VsamKill

short VsamKill (LPSTR DatasetName)

Description: This function will delete all files associated with a Dataset. The Dataset must

not be open in any other application or thread or the function will fail. If the function is

successful, the files will be removed without moving them to the recycle bin. Only disk

recovery software (available only from third party vendors) will be able to recover them and

then only if done in a timely manner. Timely manner in this case means before the operating

systems has a chance to re-use any blocks in the old files. We strongly recommend that all

the files comprising the dataset (.vod & corresponding .vom) be backed up to external

media and archived before using this function to delete the dataset.

Arguments:

DatasetName&: The Dataset Name used in VsamCreate.

Function Return Codes:

VIS_OK - You have successfully locked this string on this dataset

VIS_ACCESS_DENIED - Another process locked this string on this dataset

 __

37 Email: software_src@earthlink.net Internet: www.1-software-source.com 37

Software Source . PO Box 23306 . San Jose, CA 95153

VsamLock

short VsamLock (LONG DatasetNumber,

 LPSTR LockString)

Description: Sets a semaphore lock associated with a dataset. Other processes trying to

lock that same semaphore will receive VIS_ACCESS_DENIED.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

LockString$: Any variable length zero terminated string <= 255 characters.

Function Return Codes:

VIS_OK - You have successfully locked this string on this dataset

VIS_ACCESS_DENIED - Another process locked this string on this dataset

VIS_ALREADY_EXISTS - Your process locked this string on this dataset

VIS_NO_ROOM - The process already has 32 strings locked on this dataset

VIS_BAD_DATASET_NUMBER – Invalid dataset number

VIS_BAD_PARAMETER_VALUE – Key length >255 characters.

Examples:

Vsamlock(Dsn1&, "Jones");

Vsamlock(Dsn1&, "Accounting Division");

Vsamlock(Dsn1&, PrimaryKeyName$); // used for record locking

 __

38 Email: software_src@earthlink.net Internet: www.1-software-source.com 38

Software Source . PO Box 23306 . San Jose, CA 95153

VsamMakeMap

short VsamMakeMap(LPSTR DatasetName,

 LPDWORD lpGcount,

 LPSTR lpEncryptKey)

Description: This function will recreate the map for an existing dataset. This may be

necessary if a network or disk failure corrupts the map file (“.vom”). This function will

insure that all of the Dataset Groups are sequenced in sorted order.

 VsamMakeMap is always run as part of the VsamRebuild process. It is not necessary to

run this function as a separate operation. if you suspect a dataset has been corrupted.

Only VsamVal can determine if a dataset is corrupted or not!

Arguments:

DatasetName$: is the Name of the dataset.

lpGcount&: is a pointer to a DWORD that will be updated with the number of Groups

processed. This value is shared and may be viewed by a different thread

or part of your program running off of a timer or a message pump.

lpEncryptKey$: is an Encryption key that will be used to access the existing dataset.

Function return codes - Special Errors:

 0 VsamMakeMap Completed OK

 1 & 2 The Dataset has been truncated improperly and cannot be read!

 3 The Temporary Map file cannot be written.

 92 The Real Map file cannot be written.

 93 The TDMILL structured write failed to update the new map.

 (This is a location in the map where critical operating information

 is recorded!)

 94, 95, 96, 99 Cannot open either the Temporary or Real map file.

 97 The Specified Dataset‟s data file cannot be opened.

 98 Cannot allocate system memory for the operation.

 __

39 Email: software_src@earthlink.net Internet: www.1-software-source.com 39

Software Source . PO Box 23306 . San Jose, CA 95153

VsamMovePtr

short VsamMovePtr (LONG DatasetNumber,

 LPSTR IndexField,

 LONG RelCount,

 WORD RelOption)

Description: Moves the index pointer of either a primary or secondary index, relative to it's

current position. This function is much faster than executing VsamGet/NO_DATA.

Arguments:

DatasetNumber&: is the same as returned from VsamOpen.

IndexField$: is the index (Name or Number) on which to perform the move ptr.

RelCount&: is a plus(+) or minus(-) (long) number of records to skip.

RelOption%: is 1 if you want to DISABLE the internal RQM calls, otherwise it should

be 0.

Note: Only one VsamMovePtr can be in operation at a time and will not respond again

(except with VIS_BUSY), until it has completed or been terminated by VsamCancel.

Since, in larger data sets, this operation has the potential of taking a very long time,

VsamMovePtr has been made an asynchronous operation. This allows other parts of your

application to run just fine. Although, if any other attempt is made to access a VsamEx

function which will interfere with the relative move, that function will return VIS_BUSY

until the VsamMovePtr operation is complete or terminated. This includes any other calls

to VsamMovePtr.

Function Return Codes:

VIS_OK – Function Call was successful and completed

VIS_BAD_HANDLE – Invalid dataset number

VIS_BAD_PARAMETER_VALUE – Field specified is not an index field

VIS_BUSY – Another MovePtr is under way, try again later

VIS_NOT_FOUND - end of list before count exhausted

VIS_INTERRUPTED - will return only if VsamCancel was called

 __

40 Email: software_src@earthlink.net Internet: www.1-software-source.com 40

Software Source . PO Box 23306 . San Jose, CA 95153

VsamOpen

short VsamOpen (LPSTR DatasetName,

 WORD AccessMode,

 LONG *rDatasetNumber,

 LPSTR LicenseKey,

 LPSTR Encrypt)

Description: Opens a named VsamEx dataset and returns its reference number (handle) for

later access. You may have several datasets open concurrently, each with a different

reference number. VsamOpen initializes all index pointers to BOF.

This function is used to open all VsamEx datasets.

Arguments:

DatasetName$: The name of the dataset, optionally including a full path name. If an

extension is specified, the first two characters will be used to construct

the extensions, ending in “D”, “M”, and “L” respectively for the different

parts of the VsamEx dataset.

AccessMode%: This argument specifies the access privileges you want in a multiuser or

multi-process environment; see the following section for important

information about enforcement of these privileges.

AccessMode% = 0: In this read-only mode, VsamOpen will fail if any other process has

the dataset open for exclusive read/write access mode 1, and will return

VIS_ACCESS_DENIED. You may not make any changes to a dataset

open in read-only mode; VsamPut, VsamDelete, VsamFlush, and

VsamWriteNote will all return VIS_ACCESS_DENIED. The VSAM.H

file defines the global constant READ_ONLY = 0 to allow symbolic

specification.

AccessMode% = 1: In this exclusive read/write mode, VsamOpen will fail, and return

VIS_ACCESS_DENIED, if any process has the dataset open in any

access mode. The VSAM.H file defines the global constant

READ_WRITE = 1 to allow symbolic specification.

 __

41 Email: software_src@earthlink.net Internet: www.1-software-source.com 41

Software Source . PO Box 23306 . San Jose, CA 95153

VsamOpen

AccessMode% = 2: In this read only shared mode, VsamOpen cannot open a dataset and

will return VIS_ACCESS_DENIED, if any process has the dataset open

in mode 1 (READ_WRITE). The VSAM.H file defines the global

constant READ_ONLY_SHARED = 2 to allow symbolic specification.

AccessMode% = 3: In this read/write shared mode, VsamOpen will return

VIS_ACCESS_DENIED if any process has the dataset in mode 1 or

mode 0. The VSAM.H file defines the global constant

READ_WRITE_SHARED = 3 to allow symbolic specification.

rDdatasetNumber&: The variable in which you want to receive the reference number

(handle) to the dataset, returned if the call was successful (VIS_OK); if

the call was unsuccessful, this value is undefined. You must save this

number for later use in all references to this open VsamEx dataset.

» Note: VsamEx dataset reference numbers are managed independently of the file numbers

used for ordinary file access.

LicenseKey$: A string license key that is issued by Software Source. If this license key

does not checkout, the dataset will not open.

LicenseKey$ = (bad Key): Return code = VIS_INVALID_PASSWORD

LicenseKey$ = (valid Key): Return code = VIS_OK

Encrypt$: This key must match the key specified in the VsamCreate function that

created the dataset. Use NULL string for datasets without Encryption.

If you loose your key, the probability is very high that your data will not be recoverable.

Function return codes:

VIS_OK - Function complete successfully

VIS_ACCESS_DENIED - There's a multi-user access conflict

VIS_BAD_PARAMETER_VALUE - Invalid CacheSize% or AccessMode%

VIS_BAD_FILE - One of the dataset files isn't a recognizable VsamEx file

VIS_OLD_FILE – The dataset is a VB/ISAM file that was opened in Read Only mode

 VIS_DOS_ERROR –A failure when trying to open one of the dataset files

VIS_DISK_ERROR – Actual disk failure or bad values retrieved from file

VIS_BUSY - Loop and try again on this dataset if the net is heavily loaded

VIS_BAD_PASSWORD – A valid Encryption key is required

 __

42 Email: software_src@earthlink.net Internet: www.1-software-source.com 42

Software Source . PO Box 23306 . San Jose, CA 95153

VsamPut

short VsamPut (LONG DatasetNumber,

 LPSTR PrimaryKey,

 LPGSTR Record,

 WORD UpdateMode)

Description: Adds or replaces a master database record by primary key.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

PrimaryKey$: The primary key that you supply.

Record: The address of the GSTR pointer returned from a previous VsamGet.

VsamPut will write out the buffer pointed to by this variable as the data

portion of the record,. It will update all secondary indexes to correspond

to the components of its index fields.

UpdateMode%: A flag you can use to protect your data as follows:

UpdateMode% = 0: Allows VsamPut to either add or replace a record, depending on

whether the primary key you supply is new or already exists in the dataset.

A new key will create ("add") a new record; by contrast, a non-new key

will result in your data replacing the data in the existing record. The

VSAM.H file defines the global constant ADD_OR_REPLACE = 0 so

you can specify this symbolically.

UpdateMode% = 1: Add only (disallow replace); that is, the argument key that you supply

must be new. If the primary key is already in the dataset, VsamPut won't

replace that record, but will instead return the

VIS_UPDATE_VIOLATION code. The VSAM.H file defines the

global constant ADD_ONLY = 1 so you can specify this symbolically.

 __

43 Email: software_src@earthlink.net Internet: www.1-software-source.com 43

Software Source . PO Box 23306 . San Jose, CA 95153

VsamPut

UpdateMode% = 2: Replace only (disallow add); that is, the argument key you supply must

already be in the dataset. If it isn't, VsamPut won't add the record, but

will instead return with a VIS_UPDATE_VIOLATION code. The

VSAM.h file defines the global constant REPLACE_ONLY = 2 so you

can specify this symbolically.

When VsamPut is called, it always stores data in the “Native” mode, i.e. as internally

structured raw record data. VsamPut writes the key and data. A single field could be

replaced by using VsamStoreField within the Record data before calling VsamPut. See

the example shown in the “VsamFetchField” Function Description.

No other Values for UpdateMode% are valid.

Function return codes:

VIS_OK – Function Complete OK

VIS_UPDATE_VIOLATION - See UpdateMode%, above

VIS_ACCESS_DENIED - Dataset is not open in READ_WRITE access mode

VIS_INVALID_KEY - The primary key you supplied was null; or was longer than 255; or

contained a binary 0 [NULL] or binary 1 [Ctrl-A] byte. Nothing was done

VIS_INVALID_SECONDARY_KEY - One of the secondary-index-key fields in the

record you want to write was longer 252, or contained a binary 0 [NULL] or binary 1

[Ctrl-A] byte. Nothing was done

VIS_BAD_PARAMETER_VALUE - The value you supplied for UpdateMode% was not

valid. Nothing was done

VIS_BAD_HANDLE

VIS_DISK_FULL - There were not enough Dataset groups left to allow the next increment

of space to expand the data file

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

Coding Illustration:

 sprintf(key, "%010ld", i);

 rc = VsamPut(DatasetNo, key, gstrDat, ADD_OR_REPLACE);

 __

44 Email: software_src@earthlink.net Internet: www.1-software-source.com 44

Software Source . PO Box 23306 . San Jose, CA 95153

VsamPutWithUnlock

short VsamPutWithUnlock (LONG DatasetNumber,

 LPSTR PrimaryKey,

 LPGSTR Record,

 WORD UpdateMode)

Description: Adds or replaces a master database record by primary key.

NOTE: This function will, after writing the record, unlock the primary key of the record

being written. This function will not return an error if the record being written had not been

locked. This is a companion function to VsamGetWithLock.

 __

45 Email: software_src@earthlink.net Internet: www.1-software-source.com 45

Software Source . PO Box 23306 . San Jose, CA 95153

VsamOptimisticUpdate

short VsamOptimisticUpdate (LONG DatasetNumber,

 LPSTR PrimaryKey,

 LPGSTR Record,

 LPSTR ChkKey,

 Void *FieldData)

Description: Adds or replaces a master database record by primary key only if the contents

of the field named by the ChkKey parameter in the existing record in the database is equal

to the value in the FieldData parameter. If an existing record with the same PrimaryKey

does not exist the record will be written.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

PrimaryKey$: The primary key that you supply.

Record: The address of the GSTR pointer returned from a previous VsamGet.

VsamPut will write out the buffer pointed to by this variable as the data

portion of the record,. It will update all secondary indexes to correspond

to the components of its index fields.

ChkKey$: The key field to compare before writing the record.

FieldData: The data value to compare against the field named by ChkKey$.

NOTE: This functions purpose is to make updates to a database over a network more

efficient by providing and alternative to the need to lock and re-read records before updating

them in most cases.

 __

46 Email: software_src@earthlink.net Internet: www.1-software-source.com 46

Software Source . PO Box 23306 . San Jose, CA 95153

VsamReadDict

short VsamReadDict (LONG DatasetNumber,

 LPSTR DictKey,

 LPSTR DictData,

 LPWORD lDictData,

 WORD Options)

Description: This function will read the Dictionary data specified by DictKey$, into the

buffer DictData$. The data is unstructured data and may contain any binary values.

Arguments:

DatasetNumber& is the same value returned from VsamOpen.

DictKey$ is a pointer to the key name of the Dictionary element. This must be large

enough to hold the longest key in the dataset (255 characters max). It will

contain the Key of the next record read with XNEXT or XPREVIOUS. If

DictKey$ is “” (NULL) It will set to BOF in the Dictionary.

DictData$ is a pointer to a buffer large enough to hold the data portion of the record.

The maximum Record size is approximately 65,500 bytes.

lDictData% is the buffer length on input, and amount of data actually returned.

Option% Specifics possible read actions:

 XLOOKUP Reads an exact record by key in the dictionary.

 XNEXT Reads the Next record in the dictionary.

 XPREVIOUS Reads the Previous record in the dictionary.

Function return codes:

VIS_OK – Function call was successful

VIS_NOT_FOUND - The record was not found in the dictionary

VIS_BAD_DATASET_NUMBER – The dataset identifier is not valid

VIS_BAD_PARAMETER_VALUE - Options% was invalid

VIS_NO_ROOM – Buffer is too small, lDictData% = size needed including terminating 0.

VIS_DISK_ERROR – The operating system has a problem with the dataset

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_SEQUENCE_ERROR – An index item is out of sequence; your dataset is corrupted

 __

47 Email: software_src@earthlink.net Internet: www.1-software-source.com 47

Software Source . PO Box 23306 . San Jose, CA 95153

VsamRebuild

short VsamRebuild (LPSTR DatasetName,

 LPSTR Ebuf,

 SHORT Options,

 LPDWORD Phase,

 LPDWORD RCount,

 LPSTR LicenseKey,

 LPSTR EncryptKey)

Description: This function will read an existing dataset, extract the Data Definition, all

Primary data records and build a new dataset with indexes. See: VsamMakeMap.

Arguments:

DatasetName& The dataset name i.e. ”sourcename.xxx;destname.vod”. If a single name

is specified, without the “;” it represents both source and destination.

Ebuf$ A pointer to a log buffer. It should be at least 4096 bytes in length.

Options% -1 = Cancel Rebuild process; 0 = rebuild without backup; 1 = rebuild and

backup old data, i.e. “.ovd” & “.ovm” files are created.

Phase& A pointer to a DWORD that is updated with a progress phase number.

Rcount& A pointer to a DWORD that receives updates representing records

processed. On input, if it is a multiple of 1024, it will change Group Size.

LicenseKey$ License key used to Open the existing dataset.

EncryptKey$ Encryption key used to access the existing encrypted data.

Function return codes:

VIS_OK – Function call was successful

VIS_BUSY – The dataset rebuild function is already running – cancel it first!

VIS_INTERRUPTED - The user canceled the search or there were too many errors.

VIS_NOT_FOUND – A logical group could not be found in the dataset!

VIS_DISK_ERROR – The operating system has a problem with the dataset

VIS_SEQUENCE_ERROR – An index item is out of sequence; your dataset is corrupted

 __

48 Email: software_src@earthlink.net Internet: www.1-software-source.com 48

Software Source . PO Box 23306 . San Jose, CA 95153

VsamReturnCode

LPSTR VsamReturnCode (WORD code)

Description: This function will convert a VsamEx return code to printable text.

Arguments:

Code%: is the VsamEx function return code.

Function return:

Returns a pointer to the ASCII text representing the translation of the Function return

code.

 __

49 Email: software_src@earthlink.net Internet: www.1-software-source.com 49

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSearch

Short VsamSearch (

 LPSTR DatasetName,

 LPSTR OutputFileName,

 LPSTR SearchCriteria,

 SHORT Opts,

 LPLONG Hits,

 LPLONG Count,

 LPSTR EncryptKey)

Description: Performs a high speed search of the primary record section; primary key and

all fields, including fields not indexed. The search will rapidly locate all Primary Records

(Hits), whose primary key and/or data fields contain the criteria specified. Terms separated

by the AND operator (first character of the Search Criteria) will be combined using Boolean

'and'. Terms separated by the „OR‟ operator (second character of the Search Criteria) will be

combined using Boolean 'or'. Parsing is from left to right and the first 'or' group which

satisfies the test will designate that record a 'Hit'. Leading and trailing spaces are removed.

Embedded spaces are removed, all but one, from each search term. A term may be negated

using the „NOT‟ symbol „~‟ before the search logic (see below).

Arguments:

DatasetName$: The dataset file name. This function will operate asynchronously and will

always try to open the dataset in READ/SHARED mode.

OutputFile$: The search results will normally be returned in this file, delimited by CrLf.

In the case of a DynaSet (see Opts% below) it is the new Dataset Name.

SearchCriteria$: The first character of the search criteria is the character to be used as the

„AND‟ operator. The second character of the search list is the „OR‟

operator (see below).

 __

50 Email: software_src@earthlink.net Internet: www.1-software-source.com 50

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSearch

 The remainder of the search list is a list of terms used to filter the records.

They are delimited by the selected „AND‟ and „OR‟ operators. A search

term is any arbitrary text (including spaces), except the „AND‟ or „OR‟

operators, as specified by the first two characters. A search term group is

one or more search terms separated only by the „AND‟ operator. To be a

„Hit‟ candidate, all of the search terms in a group must be found, as

designated by the term, in the combined primary record/key. If there are

multiple search term groups, they are separated by the „OR‟ operator.

 If there is more than one search term group separated by the “OR”

operator, the comparisons in an individual record continues only until the

first “OR” term match occurs. Parentheses are treated as ordinary string

characters, and do not affect evaluation order. Optionally, a numeric

field identifier (“%3” etc.) may be used or the Field Name, followed

optionally by the NOT sign “~”, and a search logic designator to restrict

testing to a specific field as described below:

Opts%: 0= return only keys as hits.

 1=Search and return keys and formatted data as hits.

2 = Create a VsamEx DynaSet – This is a duplicate Dataset with the

same Field Definitions except that the Dataset Indexes have not been

created. Each record is a record from the original dataset that was a

“Hit” with the given Search Criteria.

 -1=Cancel search.

 NOTE: Once the function has been called, it will not return until

complete or canceled. This must be done by calling the function again (-1

in this parm) from a different thread or message pump.

Hits&: The number of primary records found matching the search criteria. This

parameter is passed by reference and its contents will be periodically

updated. This value may be used as a progress indicator.

Count&: The number of groups processed.

 Hits and Count are periodically populated with snap-shot values this value

may be used along with Hits to generate a progress indicator.

 __

51 Email: software_src@earthlink.net Internet: www.1-software-source.com 51

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSearch

Search Logic Description .

= „Equal‟ Search; requires the term to be an exact match. i.e. 5=Jones

would mean field 5 must be exactly equal to „Jones‟

> „Greater Than‟ Search; requires the data to sort alphanumerically greater

than term. i.e. Field5>Jones would mean field 5 must be

alphanumerically greater than „Jones‟

< „Less Than‟ Search; requires the data to sort alphanumerically less than

term. i.e. 5<Jones would mean field 5 must be alphanumerically less

than „Jones‟

: „Begins with‟ Search; requires the field to begin with the term. i.e.

 Primary:Jone or 0:Jone would mean field 0 only had to begin with

„Jone‟; „Jones‟ would be a Hit., only in field 0 (the Primary Key).

[„Contains‟ Search; requires the field only to contain the term. i.e.

 12[Jon would mean „Jones‟ is a Hit, „Jone‟ is a Hit, and likewise „ Wilma

Jonell Smith‟ is a Hit, but only if they are found in field 12.

~ The not sign may be used to negate the meaning of a particular match. For

example, “~:” selects a record as a hit if the data does not begin exactly

with the term. i.e. “Name~:John” indicates that records beginning with

“John” in the Name field are Not Hits.

NOTES:

 No logic (Default) - All terms that are absent of search logic are applied

such that if the term is contained anywhere in the record or key, that

record is a Hit.

 A missing field is considered NOT to be a MATCH in a term that calls

for it. Likewise, if the term contains the not (~) a missing field is

considered a MATCH.

 __

52 Email: software_src@earthlink.net Internet: www.1-software-source.com 52

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSearch

EXAMPLE 1: „&,Jones ,Smith & Wesson‟

Records containing either the term 'Jones' , or both terms 'Smith' and 'Wesson' in either the

primary key or data part of the record would be a Hit.

EXAMPLE 2: „&,Jones &Smith&Wesson'

Records containing the term 'Jones ' (space included), containing 'Smith' and additionally

'Wesson' in either the primary key or any part if the data portion of the record would be a

Hit.

EXAMPLE 3: „+^5~:Jone^Smith+Wesson‟

Records not beginning with „Jone‟ in field 5, or both the terms „Smith‟ and „Wesson‟

found anywhere in the record would make it a Hit.

NOTE: Search operations are canceled by setting Opts% = -1.

Function return codes:

VIS_OK

VIS_ACCESS_DENIED (There's a multi-user access conflict.)

VIS_BAD_PARAMETER_VALUE

VIS_BAD_FILE (One of the dataset files isn't in VB/ISAM format.)

VIS_OUT_OF_MEMORY

VIS_DOS_ERROR (File open failure, probably because it couldn't find it.)

VIS_DISK_ERROR

VIS_OUT_OF_FILE_HANDLES

VIS_INTERRUPTED (Either the user canceled the search or the results overflowed.)

 __

53 Email: software_src@earthlink.net Internet: www.1-software-source.com 53

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSetDictBof

short VsamSetDictBof (LONG DatasetNumber)

Description: Sets the file pointer in the Dictionary to BOF: Before the First entry, if any.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Remember, VsamEx maintains a separate, independent table entry for each index. Pointers

into the dataset may move independent of one another and do not interfere with each other.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

 __

54 Email: software_src@earthlink.net Internet: www.1-software-source.com 54

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSetDictEof

short VsamSetDictEof (LONG DatasetNumber)

Description: Sets the pointer in the Dictionary to EOF: After the Last entry, if any.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

Remember, VsamEx maintains a separate, independent table entry for each index. Pointers

into the dataset may move independent of one another and do not interfere with each other.

Function return codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

 __

55 Email: software_src@earthlink.net Internet: www.1-software-source.com 55

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSetFieldAttribute

short FAR PASCAL VsamSetFieldAttribute(

 LONG DatasetNumber,

 LPSTR lpField,

 LPSTR lpAttributeName,

 LPSTR lpDataValue)

Description: This function will Set the value of a field attribute. This function will replace

the value of the specified field attribute if it previously existed. If the attribute value is

initially nonexistent, it will be created as a User defined attribute. If the lpData points to a

NULL value, The corresponding field attribute will be removed if it is not a Predefined

attribute.

Argument:

DatasetNumber&: is the same value returned from VsamOpen.

lpField$: is a pointer to the FieldName/(optionally the Field Number as “%n”).

lpAttributeName&: a Pointer to the Attribute name. User defined or Predefined.

 Predefined Attributes that may be modified:

 Field Name "Fnam" String Name of the field

 Field Is an Index "Find" [T, F, P, D] – True, False, Partial or Disable

 Field width "Fwid" field width in characters.

 Field Just "Fjst" [L,C,R] – Left, Center, Right.

 Field Is Deleted "Fdel" [T, F] - True, False.

Certain Predefined attribute values are restricted as above. If you wish to change

the “Find” (Indexed) attribute's setting for an existing string field, then ONLY

certain changes are allowed depending on the current state of the index in the file.

They are as follows:

Current State to New State

 T -> D

 F -> P

 P -> D

 D -> P

 __

56 Email: software_src@earthlink.net Internet: www.1-software-source.com 56

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSetFieldAttribute

Where:

T = True - all records in the file are currently indexed for this field (fully

indexed)

F = False - no records in the file are indexed for this field

P = Partial - some of the records are indexed for this field. Only records

added or changed after setting the field's Find attribute to "P" will be

indexed. Run VsamRebuild to index all remaining records.

D = Disabled - this field's previously active index (full or partial) has been

disabled for all records.

Therefore, you cannot perform T -> F or F -> T direct transformations on existing

string fields. The intermediate "P" and "D" codes must be used until a

VsamRebuild can be run on the file.

When a VsamRebuild is run on the file, the index field will be "cleaned up" for all

of the file's records, and the following index transformations will have been

completed internally:

 Old State to New State

 P -> T

 D -> F

Where:

P = Was Partially indexed - only some records were indexed on this field.

T = All records are now fully indexed for this field.

D = Was Disabled index - (index existed but was not active)

F = All Disabled indexes have been removed from the file

lpDataValue$ is a pointer to a buffer containing the zero terminated Value. For User

defined attributes (not Predefined), any string value may be set for this

attribute. Keep in mind that all data definitions are stored in the dataset

as a special record whose maximum size is 65k bytes.

Function return codes:

VIS_OK – Function call was successful

VIS_BAD_DATASET_NUMBER – The dataset identifier is not valid

VIS_DISK_ERROR – The operating system has a problem with the dataset

VIS_ACCESS_DENIED – The field is protected – Read Only!

 __

57 Email: software_src@earthlink.net Internet: www.1-software-source.com 57

Software Source . PO Box 23306 . San Jose, CA 95153

VsamSetFieldToNull

short VsamSetFieldToNull (LONG DatasetNumber,

 GSTR *Record,

 LPSTR FieldName,

 WORD element)

Description: This function will remove the field from this record. Any subsequent call to

retrieve data from this field in this record will result in the error VIS_NOT_FOUND.

DatasetNumber& same as returned from VsamOpen.

 Record: A GSTR pointer to the record returned by VsamGet.

FieldName$: is the name of the field to be removed. Optionally, you may use “%n”

where n is the string value of the field number.

Element%: Unused. Set to 0.

Function Return Codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

 __

58 Email: software_src@earthlink.net Internet: www.1-software-source.com 58

Software Source . PO Box 23306 . San Jose, CA 95153

VsamStoreField

short VsamStoreField (LONG DatasetNumber,

 GSTR *Record,

 LPSTR FieldName,

 WORD element,

 LPSTR FieldType,

 VOID *FldData,

 WORD lFldData)

Description: This function will store data from FldData into the raw record pointed to by

Record (from a previous VsamGet call). (see VsamFetchField.)

DatasetNumber& same as returned from VsamOpen.

 Record: A GSTR pointer to the record returned by VsamGet. You can create a

New record by setting this value to NULL (0). If a new record is created,

the new GSTR will be stored at the address pointed to by Record.

FieldName$: is the name of the field into which the FldData data will be placed.

Optionally, you may use “%n” where n is the string value of the field

number.

FieldType$: is a string value which defines the field type (E.G. "$", or "%").

FldData: is the variable containing the data to be stored into Record. Its inherent

type must be what is defined in the FieldType$ parameter. Furthermore, it

must correspond to the field specified in Record defined above.

Function Return Codes:

VIS_OK - Function call completed successfully

VIS_BAD_DATASET_NUMBER – Invalid open dataset handle

VIS_BAD_HANDLE – Potential bad dataset

VIS_BAD_PARAMETER_VALUE – Field is not an index

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_BUSY – The map is temporarily locked, please retry the operation

 __

59 Email: software_src@earthlink.net Internet: www.1-software-source.com 59

Software Source . PO Box 23306 . San Jose, CA 95153

VsamUnlock

short VsamUnlock (LONG DatasetNumber,

 LPSTR LockString)

Description: Removes the specified semaphore lock, if it exists.

Arguments:

DatasetNumber&: The reference number returned by VsamOpen.

LockString$: Any variable length zero terminated string <= 255 characters.

Function Return Codes:

VIS_OK - You have successfully unlocked this string on this dataset

VIS_NOT_FOUND - You tried to unlock a LockString you do not have locked

VIS_BAD_HANDLE – Invalid dataset handle

VIS_BAD_PARAMETER_VALUE – LockString$ exceeds 255 bytes

VIS_OUT_OF_MEMORY

VIS_DOS_ERROR

Examples:

VsamUnlock(Dsn1&, "Jones");

VsamUnlock(Dsn1&, "Accounting Division");

VsamUnlock(Dsn1&, PrimaryKeyName$); // used for record locking

 __

60 Email: software_src@earthlink.net Internet: www.1-software-source.com 60

Software Source . PO Box 23306 . San Jose, CA 95153

VsamVal

short VsamVal (LPSTR Filespec,

 LPSTR Ebuf,

 SHORT Foptions,

 LPDWORD lpFCount,

 LPSTR EncryptKey)

Description: The low level dataset is checked for errors by reading every record. This

function will report any errors found that would prevent data to be read from the dataset.

There are two modes of operation, Physical and Logical. Physical Validate reads physical

records a Group at a time and checks for record key sequencing only within the Group. This

is the fastest validation. Logical validate cycles through the dataset in key sequence and will

check that all records are sequenced properly over the entire dataset. This can only be done

if the validate routine can gain exclusive shared read access to the dataset.

Since VsamEx[treme] only checks data Groups for errors when they are accessed, it is

possible that a Group has undergone physical damage through a hardware or network

failure. This error will not be detected until some time later - the next time that group is

accessed! This function should be run prior to creating archive copies of the dataset to

insure that it is error free.

While VsamEx[treme] will operate and continue to fetch records from undamaged groups,

it will report a problem with a group when it cannot retrieve a record because damage has

been detected. If a group is damaged, it may be repaired by running VsamRebuild. This will

not recover the lost data. It will only salvage what it can, if anything, from damaged

group(s) and restore the dataset to a functional error free condition.

 __

61 Email: software_src@earthlink.net Internet: www.1-software-source.com 61

Software Source . PO Box 23306 . San Jose, CA 95153

VsamVal

Arguments:

FileSpec$: The Dataset name.

Ebuf$: Pointer to a Log buffer – reserve at least 4096 bytes.

Foptions%: -1 = cancel;

 0 = logical validate – runs in exclusive “Read Only” mode!

 1 = Physical validate – runs in” Read Only Shared” mode!

lpFcount&: Pointer to a DWORD that will be updated with the number of groups.

EncryptKey$: An Encryption key that allows access to this dataset if it is encrypted.

Function Return Codes:

VIS_OK – Dataset Validated properly! Example Ebuf$ Contents:

 Primary Records Expected and Found = 1507163

 Groups Expected = 65529

 Groups Found = 65529

VIS_NOT_FOUND – Dataset was not found

VIS_DISK_ERROR – Cannot read from the dataset

VIS_INTERUPTED – Validation was interrupted by the user

VIS_DOS_ERROR – Disk Error in one of the dataset files

 __

62 Email: software_src@earthlink.net Internet: www.1-software-source.com 62

Software Source . PO Box 23306 . San Jose, CA 95153

VsamWriteDict

short VsamWriteDict (LONG DatasetNumber,

 LPSTR DictKey,

 LPSTR DictData)

Description: This function will write/replace the Dictionary data element pecified by the

DictKey$ string, with data from the DictData$ string. The data is considered to be a 0

terminated string. The Maximum data string size is approximately 65,530 bytes. There is

no limit to the number of dictionary elements that may be written except those which limit

VsamEx datasets in general. The Dictionary type records may be used to fill up the entire

dataset. Dictionary records occupy the same amount of space in a data set as would a

primary record with a single string as an element.

DatasetNumber& is the same value returned from VsamOpen.

DictKey$ is a string pointer to the key for the Dictionary element being written. If

the Key specified already exists, the data portion of the record will be

replaced by the data contained in DictData$, i.e. (overwritten).

DictData$ is a pointer to the Data buffer of the Dictionary element to be written.

Function return codes:

VIS_OK – Function call was successful

VIS_NOT_FOUND - The record was not found in the dictionary

VIS_BAD_DATASET_NUMBER – The dataset identifier is not valid

VIS_BAD_PARAMETER_VALUE - Options% or Index field was invalid

VIS_OUT_OF_MEMORY – The return buffer is too small

VIS_DISK_ERROR – The operating system has a problem with the dataset

VIS_DATA_VALIDITY_CHECK - Your dataset may be corrupted

VIS_SEQUENCE_ERROR – An index item is out of sequence; your dataset is corrupted

 __

63 Email: software_src@earthlink.net Internet: www.1-software-source.com 63

Software Source . PO Box 23306 . San Jose, CA 95153

BATCH API

VsamBatchCancel

short VsamBatchCancel (LONG DatasetNumber)

Description: This function will discard all pending, non committed batch transactions in an

open batch and close the batch.

Function return codes:

VIS_OK – Function call was successful

 __

64 Email: software_src@earthlink.net Internet: www.1-software-source.com 64

Software Source . PO Box 23306 . San Jose, CA 95153

VsamBatchCreate

short VsamBatchCreate (LONG DatasetNumber,

 LPSTR BatchName,

 DWORD Options)

Description: This function will create and open a Batch receptacle to hold selected

transactions. These transactions may be committed or canceled at any time prior to a close.

The default option is AUTO_COMMIT and the batch will commit any transactions in the

buffer once it becomes full. Only the final batch will need to be committed.

When a batch has been created, all calls to:

 VsamPut

 VsamPutWithUnlock

 VsamDelete

 VsamOptimistcUpdate

 VsamWriteDict

 VsamDeleteDict

 VsamWriteList

 VsamDeleteList

will be put in a batch to be processed all return codes will be VIS_OK.

DatasetNumber& is the same value returned from VsamOpen.

BatchName$ the ASCII name of the batch. No other user may create a batch with the

same name, until the batch is committed and closed.

Options$ is one or more of the following:

 BATCH_NOT_AUTO_COMMIT – returns “VIS_BATCH_FULL” if the

batch cannot accept a requested transaction because the buffer is full.

 or

 BATCH_QUIT_ON_ERROR – return with a batch error immediately

without waiting for a commit.

Function return codes:

VIS_OK – Function call was successful

VIS_BATCH_FULL – There is no room in the buffer to save the requested transaction.

VIS_BAD_DATASET_NUMBER – The dataset identifier is not valid

 __

65 Email: software_src@earthlink.net Internet: www.1-software-source.com 65

Software Source . PO Box 23306 . San Jose, CA 95153

VsamBatchCommit

short VsamBatchCommit (LONG DatasetNumber)

Description: This function will cause a set of stored batch operations to be executed at the

remote, or local site. Any errors encountered will be itemized and may be retrieved using

VsamBatchErrors. This includes successful operations that return VIS_OK. In the case of a

batch opened with the “BATCH_QUIT_ON_ERROR” option, only one error will be in the

buffer (besides the OK‟s up to that point).

DatasetNumber& is the same value returned from VsamOpen.

Function return codes:

VIS_OK – Function call was successful

 __

66 Email: software_src@earthlink.net Internet: www.1-software-source.com 66

Software Source . PO Box 23306 . San Jose, CA 95153

VsamBatchErrors

short VsamBatchErrors (LONG DatasetNumber,

 LPSTR ErrorBuf,

 WORD LenErrorBuf)

Description: This function returns a list of Batch errors as a string using the following

format description:

“%d,%d,%s,%d,%s,%s|” where each error descriptor is separated by “|”

and the error fields are separated by comma “,”.

Field 1 error sequence number

Field 2 VsamEx Error code

Field 3 Ascii string - translation of error code

Field 4 Batch Command Code

Field 5 Ascii string - API Function Name of the transaction

Field 6 Ascii string - Primary Key of the record

Example:

1,1,VIS_NOT_FOUND,8,VsamDelete,00010|

DatasetNumber& is the same value returned from VsamOpen.

ErrorBuf$ is a pointer to your buffer where the error(s) will be recorded.

LenErrorBuf % size of the ErrorBuf.

Function return codes:

VIS_OK – Function call was successful

 __

67 Email: software_src@earthlink.net Internet: www.1-software-source.com 67

Software Source . PO Box 23306 . San Jose, CA 95153

VsamBatchStatus

short VsamBatchErrors (LONG DatasetNumber,

 LPSTR StatusBuf,

 WORD LenStatusBuf)

Description: This function returns a summary status in ASCII:

Example:

“Batch Mode Active

Batch Name = Test Batch

Items in batch = 100

Batch Space used = 1234

Offset of first Item = 0

Batch Space Available = 61000

Batch Options = 3”

 Or

“Batch Mode Inactive”

DatasetNumber& is the same value returned from VsamOpen.

StatusBuf$ is a string pointer to the buffer where status will be written.

LenStatusBuf % size of the StatusBuf.

Function return codes:

VIS_OK – Function call was successful

 __

68 Email: software_src@earthlink.net Internet: www.1-software-source.com 68

Software Source . PO Box 23306 . San Jose, CA 95153

APPENDIX

APPENDIX - A - SUPPORTED FIELD TYPES

Field Type Descriptions:

Type

name

Description

Type

decl

char

Value ranges

Integer 2-byte integer % -32,768 to 32,767

Long 4-byte integer & -2,147,483,648 to 2,147,483,647

Single 4-byte floating-

point number

! -3.402823E38 to -1.401298E-45

1.401298E-45 to 3.402823E38

Double 8-byte floating-

point number

-1.79769313486232D308 to

-4.94065645841247D-324 (minus)

 4.94065645841247D-324 to

 1.79769313486232D308 (plus)

Currency
1

8-byte number

with fixed

decimal point

@ -922337203685477.5808 to

 922337203685477.5807

String
2
 Variable length

character string

$ 0 to 64K characters

Compound
3
 concatenated

string

Cf1.w2:

f2.w2:….

1 to 252 characters for a virtual

index. Fields (fn) may be any valid

String field in the dataset, not

necessarily other index fields.

1 Not supported in Linux.

2 Only String fields may be index fields.

3 This type is automatically defined as an index field.

 __

69 Email: software_src@earthlink.net Internet: www.1-software-source.com 69

Software Source . PO Box 23306 . San Jose, CA 95153

 APPENDIX - B - NORMAL ERROR CODES

CODE - NORMAL error messages Description Action

 0 VIS_OK All is OK Normal return

 1 VIS_NOT_FOUND Object not found programmers option

 2 VIS_UPDATE_VIOLATION update violation programmers option

 3 VIS_ACCESS_DENIED Multi-user access Programmers option

 4 VIS_BAD_DATASET_NUMBER Invalid dataset ref Re-open Dataset

 5 VIS_BAD_FORMAT Invalid format string See Function Spec

 6 VIS_INVALID_KEY Illegal char in key See Function Spec

 7 VIS_BAD_PARAMETER_VALUE Invalid value See Function Spec

 8 VIS_BAD_FILE File is not VsamEx See VsamOpen Spec

 9 VIS_ALREADY_EXISTS Dataset Name exists See VsamCreate Spec

 10 VIS_NO_ROOM No Note space left See VsamWriteNote

 11 VIS_DISK_FULL No Disk space left Add Disk space

 12 VIS_OUT_OF_MEMORY No Memory Reduce Mem Use

 13 VIS_DOS_ERROR DOS failure See Function Spec

 14 VIS_DISK_ERROR Disk read/write error Fix Disk, then Rebuild

 15 VIS_DATA_VALIDITY_CHECK Corrupted dataset Run Rebuild

 16 VIS_INVALID_SECONDARY_KEY Secondary index See VsamPut Spec

 17 VIS_SEQUENCE_ERROR Records are out of sort Rebuild dataset

 18 VIS_OUT_OF_FILE_HANDLES No system file handles Close some files

 19 VIS_BUSY An operation was busy Retry - notify the user.

 20 VIS_INVALID_LICENSE_KEY Invalid License Key See VsamOpen

 21 VIS_FUNCTION_UNAVAILABLE Function not implemented

 22 VIS_INTERRUPTED Asynchronous operation See Function Spec

 interrupted the Program

 23 VIS_BAD_PASSWORD Invalid Encryption Key Use a Valid Key

 24 VIS_INVALID_LICENSE Invalid Vservice Key Use a Valid Key

 25 VIS_OLD_FILE VB/ISAM File Type to convert, open in

 READ/WRITE mode

 26 VIS_DATASET_FULL The dataset is full Rebuild the dataset to

 for the number of compress the Groups.

 Groups specified Increase Num. Groups.

 27 VIS_BATCH_FULL Out of room in batch buffer Commit Batch

 28 VIS_BATCH_ERROR Error doing batch update Check Errors

 30 VIS_NETWORK_NOT_READY Network error

 31 VIS_HOST_NOT_AVAILABLE Network error

 32 VIS_SOCKET_ERROR Network connection error

 33 VIS_CONNECT_ERROR Network connection error

 34 VIS_SOCKET_TIMEOUT Communication timeout

 35 VIS_CONNECTION_REFUSED Vservice is not running

 36 VIS_MAX_CONNECTIONS_EXCEDED Connections exceeded 2000

 __

70 Email: software_src@earthlink.net Internet: www.1-software-source.com 70

Software Source . PO Box 23306 . San Jose, CA 95153

APPENDIX - C - EXTENDED ERROR CODES

Code EXTENDED error description Recommended Action

101-103 Bad Group header restore dataset

 105 A single partial record is larger than 1/2 group. “

 222 Internal failure caused group split to create new group "

 larger than maximum size of a group in this dataset.

 300 Errors in the 300s can occur if some of the updates of a “

 record have been completed but the system does not allow

 VsamEx to extend the file to finish updating the record.

 321,333 Data record sub-parts are out of sequence. "

 345 Could not locate Primary record through an existing Secondary. "

 346 Secondary (Xref) couldn't be deleted - so we didn't delete primary. "

 347 Secondarys were deleted but could not delete the primary. "

 348 Secondary (Xref) update failed after successful primary update. "

 444 No address provided by Caller for return data from get. Reboot

 501 Record structure does is invalid. Run Rebuild

 502&3 Decode Buffer too small - Bad record structure. "

 503 Same as 502. “

 504 A field in the Dataset record is invalid. “

 555 Last partial piece of a record cannot be located - Record was truncated. "

 666 Dataset Record is too large. “

 765 Raw data read returned no data (NULL). "

 885 Dataset activation failed, usually because network rights Call net support

 are not set properly, or the Map file (.vom) is corrupted,

 or there is a problem creating or accessing the lock file. Run Rebuild

 886-7 Internal control block inconsistencies detected usually Reboot

 a memory problem cause by a GPF or semiconductor failure.

888 Part of the VsamEx dataset became unavailable to the software "

1001 A disk seek failure occurred in the data file - Fix the hardware. Run Rebuild or

 restore dataset

1002 A Data read/write failure occurred in the data file. “

1003 The Group size found was too big. Run Rebuild or

 restore dataset

1004 A Disk seek failure occurred in the finder file - Fix the hardware. Restore the

 dataset

1005 A finder read/write failure error occurred . "

1014 An error was detected during a group split process which

 generated a bad header. Run Rebuild

 or restore the

 dataset

1234 Internal Consistence error in assembling the data record

 usually a memory problem cause by a GPF or HW failure. Reboot

1401-1450 Specific Disk Errors indicating code location where failure occurred. Call for Support!

2001 Group Validity check - Record size was either too small Run Rebuild or

 or too large for the Group. Restore dataset

2002 Group Validity check - A record had no key "

2003 Group Validity check. Record size field exceeds Group limit "

2005 Group Validity check - The total of all record size fields "

 does not match the size of the data in the group.

7001-4 Unexpected attempt to truncate the Map – data was preserved Call for Support!

02-21-2007

