

VVVsssaaammmEEExxx[[[tttrrreeemmmeee]]]
The Original “un-database”

 (With SHA+ Encryption)

User Guide

February 2011

Windows & Linux Edition’s

Software Source

PO Box 23306

San Jose, CA 95153

United States of America

Email

software_src@earthlink.net

Web

www.1-software-source.com

VsamEx[treme] is a copyrighted product for software

development under license only. Any use of this product

indicates your acceptance of the terms and conditions of the

software license contained in this manual.

 __

2 Email: software_src@earthlink.net Internet: www.1-software-source.com 2

Software Source . PO Box 23306 . San Jose, CA 95153

Limited Warranty

Software Source provides the VsamEx[treme] software and accompanying materials

with the following limited warranty:

When used in accordance with instructions, Software Source warrants this product against

any defects due to faulty materials or workmanship, for a period of sixty days from the

purchase date. If Software Source receives notification within this warranty period of

defective materials or workmanship, and determines that such notification is correct, then

Software Source will replace the defective product distribution and/or documentation at no

charge. This warranty does not cover damage due to accident, abuse, misuse, or improper

installation of the product. Software Source authorizes no other warranty, written or oral,

and there are no implied warranties, including, but not limited to, the implied warranties of

merchantability and fitness for a particular purpose. In no event will Software Source be

liable for any damages, including any general, special, incidental, indirect, exemplary, or

consequential damages arising out of the use, misuse, or inability to use the

VsamEx[treme]product. The entire and exclusive liability and remedy for breach of this

Limited Warranty shall be limited to replacement of defective product distribution and/or

documentation and shall not include or extend to any claim for or right to recover any other

damages, including, but not limited to, loss of profit, data, or use of the software, or

special, incidental, or consequential damages or other similar claims, even if Software

Source has been specifically advised of the possibility of such damages; in no event,

however, will Software Source's liability exceed the actual amount paid for the product.

NOTICE

Any use of VsamEx[treme]or any of its components constitutes acceptance of the

terms and conditions included in the VsamEx[treme] License Agreement and its

Limited Warranty.

 __

3 Email: software_src@earthlink.net Internet: www.1-software-source.com 3

Software Source . PO Box 23306 . San Jose, CA 95153

Our Special Thanks for contributions to this project go to:

 Jay J. Falconer at Bitwise Software International, Inc., http://www.shoppingQ.com, for
his help in testing VsamEx for Linux, his many suggestions and his creation of a
VsamEx C++ class wrapper that ships with the product.

 Mike Whittingham at Chaos Software, Inc., http://www.chaossoftware.com, for his
long time support, kind critical comments and meaningful suggestions.

 Visit their websites to see real world applications of VsamEx[treme] and its

predecessor VB/ISAM!

 Tony Altwies

 Software Source

 __

4 Email: software_src@earthlink.net Internet: www.1-software-source.com 4

Software Source . PO Box 23306 . San Jose, CA 95153

 __

5 Email: software_src@earthlink.net Internet: www.1-software-source.com 5

Software Source . PO Box 23306 . San Jose, CA 95153

CONTENTS

LEGAL NOTICES
 Copyright Notice, Software License & License Keys 6

INTRODUCTION
 Scope & Overview .. 7

 Compatibility ... 8

 Network Considerations & File Access Modes 9

DATA ACCESS COORDINATION
 Automatic Locking and VIS_BUSY ... 11

 Semaphores: VsamLock and VsamUnlock 13

 General Notes on Locking ... 16

 Index Pointer Positioning .. 17

FEATURES & DESIGN
 Encryption .. 18

 Sparse Record Fields ... 19

 Data Set Extensions & Network Tuning .. 20

 Dictionary .. 21

 Notes .. 22

FUNDAMENTALS

 API Summary ... 23

 Records & Fields, Primary Keys, Secondary Keys & Indexes 26

 Duplicate Keys, Sparse Indexes & More about Keys, Key Lengths 27

 Case-insensitive, Normalization, Numeric Keys, Forbidden char’s 28

 Compound Keys .. 29

 Using Indexes ... 30

 Index usage logical results table .. 32

 Support Functions: VsamVal, VsamRebuild, VsamMakeMap 35

 __

6 Email: software_src@earthlink.net Internet: www.1-software-source.com 6

Software Source . PO Box 23306 . San Jose, CA 95153

LEGAL NOTICES Software license Keys

Copyright Notice and Trademarks

VsamEx Copyright  1992 - 2007 by Software Source; all rights reserved. VsamEx[treme]

is a proprietary computer software product provided by its copyright holder, Software Source;

both the software and its documentation are copyrighted, and you may not copy either except as

expressly provided in the VsamEx[treme] Software License. VsamEx[treme] is a

trademark of Software Source. VB/ISAM is a related product, also a trademark of Software

Source, Copyright  1992 - 2007, requiring a separate license from Software Source. Microsoft

 and MS-DOS are registered trademarks of Microsoft Corporation. Windows and Visual

Basic are trademarks of Microsoft Corporation.

Software License Keys

VsamEx License Keys, software, and documentation are the sole property of Software

Source. Said property is licensed not sold. Software Source retains sole title and rights to

all said property except rights specifically granted to others by Software Source. You may

purchase and register rights to use a License Key directly from Software Source.

Software Source hereby licenses the use of VsamEx for the purpose of software

development, provided all of the following conditions are met:

1. Only one person at a time on one machine may use a particular License Key for the

purpose of developing applications linked to VsamEx. 2. You must use the License Key

provided to you by Software Source. 3. You must register the transfer, if any, of the

License Key with Software Source. 4. You may not enable unregistered use of VsamEx

in a development environment. 5. You may not use a License Key already registered to

someone else. 6. Software Source must have a record of originally issuing the License

Key.

As long as all of the above conditions are met, you are expressly granted the rights to copy,

transfer, and distribute your applications linked with the VsamEx Library as part of the

software you develop using VsamEx without Royalty.

 __

7 Email: software_src@earthlink.net Internet: www.1-software-source.com 7

Software Source . PO Box 23306 . San Jose, CA 95153

INTRODUCTION Scope

Scope

This manual describes the capabilities and mechanisms of VsamEx versions for Linux and

Windows operating systems. The manual includes the latest features and hints for

optimizing your use of VsamEx in the design of your multi-user network software

products. A complete description of all function can be found in the Programmers

Reference manual.

Overview

VsamEx may be used in a standalone mode or in a multi-user, shared networked mode

with full record locking functions, VsamLock and VsamUnlock. This extends the

VsamOpen function with two additional shared file access modes.

The remainder of the Introduction section discusses MultiUser and SingleUser file and

program compatibility, issues for network environments, and file access modes. File

Access Modes: In addition to the READ_ONLY and READ_WRITE access modes

provided by the VsamOpen function, READ_ONLY_SHARED and

READ_WRITE_SHARED modes are supported for Multiple simultaneous user access.

This section describes the use of all four VsamOpen modes.

The Data Access Coordination section describes two MultiUser forms of data access

coordination; automatic locking mechanisms to preserve file integrity, and two functions --

VsamLock and VsamUnlock -- to preserve application integrity. This section describes

these mechanisms, and discusses index pointer positioning.

 __

8 Email: software_src@earthlink.net Internet: www.1-software-source.com 8

Software Source . PO Box 23306 . San Jose, CA 95153

INTRODUCTION VsamEx Compatibility

VsamEx Compatibility

All datasets created by VB/ISAM may be accessed by VsamEx. Once a Dataset is

opened in a READ_WRITE non-shared mode (mode 1) by VsamEx, it is no longer

compatible with VB/ISAM access. While the API’s are similar, the extended features

of VsamEx preclude 100% backward compatibility. The conversion process is

automatic only in this mode. VsamEx will create a set of VsamEx Field Definitions

corresponding to the format string in the VB/ISAM dataset. The Format String will

be removed from the Notes section of the dataset. Notes will also be converted to

Dictionary records with a prefix of “-Notes-” (see Dictionary below).

The default name for Fields will be F[n][ffd] where n = the field number and ffd =

the original field format definition as found in the old format string. So, a format

string of “$,a3%,#” would generate “F1$”, “F2a3%”, “F3a3%”, “F4a3%”, “F5#”

for default field names. As an alternative, an .isc file may be created with each line

representing a field. Remember the record Key is first and is field 0. Type will

correspond to the format string element: “$,$,#”

 NewID,31,L Field name, width, Justification

 Name,20,L Field name, width, Justification

 Salary,15,R Field name, width, Justification

Field width and justification are only for reference and do not restrict the length of data in

string fields. For example, these attributes may be referenced by a report module.

VsamEx is supported as a DLL, OCX and library (both Link .lib & .dll). A License Key,

provided by Software Source, will enable you to open any given dataset. VsamEx will

function for about 14 days without a valid license. All current versions of VsamEx are file

compatible with all previous version of VsamEx. Once an older VB/ISAM dataset is

converted or a new one is created by VsamEx, it is no longer accessible by VB/ISAM

DLL’s. The only version of VsamEx is the Enterprise Edition of VsamEx - allowing

datasets to grow to over 2.1 GB.

The application programmer's interface (API) is similar to previous versions of VB/ISAM; all function

definitions reflect similar parameters except that they are geared toward a newer more efficient interface

allowing more features and easier integration into Linux “C/C++” as well as Windows .NET, “C/C++”,

Visual Basic, Pascal. basically any language capable of calling a DLL or link with a standard library.

 __

9 Email: software_src@earthlink.net Internet: www.1-software-source.com 9

Software Source . PO Box 23306 . San Jose, CA 95153

INTRODUCTION Network Considerations

Network Considerations

VsamEx shared file access uses the file locking features supported in all Linux as well as

Windows operating systems, and is not designed around the specific workings of any given

type of networking software. This means that any network software that properly supports

SHARED access or provides equivalent functionality, will be compatible with VsamEx

shared file access.

File Access Modes

» The VsamOpen function, in access modes 2 and 3 (READ_ONLY_SHARED and

READ_WRITE_SHARED), will return VIS_ACCESS_DENIED if you try to open a

dataset located on a disk that is not share enabled. Modes 0 and 1 continue to operate as

in previous versions of VsamEx. Your application must also have network "privileges" to

create, read, and write files on server or remote peer systems to use access modes 2 and 3.

The VsamOpen function in VsamEx provides four file access modes:

mode 0 = READ_ONLY

mode 1 = READ_WRITE

mode 2 = READ_ONLY_SHARED

mode 3 = READ_WRITE_SHARED

Mode 0: A program can successfully open a file in mode 0 only if no other programs have

the file open in mode 1 or mode 3; otherwise VsamOpen will return

VIS_ACCESS_DENIED. In mode 0 access, the updating functions (VsamPut,

VsamDelete, VsamWriteNote, VsamWriteDict, and VsamFlush) are disabled; they will

all return VIS_ACCESS_DENIED for a dataset opened in mode 0. Note that a file can

have multiple concurrent mode 0 and mode 2 accesses.

 __

10 Email: software_src@earthlink.net Internet: www.1-software-source.com 10

Software Source . PO Box 23306 . San Jose, CA 95153

INTRODUCTION File Access Modes

» Use mode 0 in your application when you want read only access with no chance of other

processes acquiring update access.

Mode 1: A program can successfully open a file in READ_WRITE mode only if no other

accesses to this file exist; otherwise, VsamOpen will return VIS_ACCESS_DENIED.

» Use mode 1 in your application to exclude all other processes from all access.

» This mode is the only mode that will allow conversion of older VB/ISAM datasets.

Mode 2: A program can successfully open a file in READ_ONLY_SHARED mode only if

no other program has the file open in mode 1. In mode 2 access, the updating functions

(VsamPut, VsamDelete, VsamWriteNote, VsamWriteDict and VsamFlush etc.) are

disabled; they will all return VIS_ACCESS_DENIED. A file can have multiple concurrent

mode 2 accesses, mode 0 and mode 2 accesses, or mode 2 and mode 3 accesses. Mode 0

and mode 3 are mutually exclusive.

» Use mode 2 in your application when you want read-only access for a process when

other processes may be updating the file (using mode 3); the locking mechanisms

described in the next section are provided for coordination under these circumstances.

Mode 3: a program can successfully open a file in READ_WRITE_SHARED mode only if

no other program has the file open in mode 0 or mode 1. Note that a file can have multiple

concurrent mode 2 and mode 3 accesses.

» Use mode 3 in your application when you want read/write access to a file in

coordination with other processes. The locking mechanisms described in the next section

provide that coordination.

Note that the only purpose of mode 2 is to provide convenient way to preclude "accidental"

use of VsamPut, VsamDelete, VsamWriteNote, VsamWriteDict, and VsamFlush in

complex coding situations. All access combinations may be constructed from modes 0, 1,

and 3.

In summary, the following access mode combinations are compatible for concurrent access

to the same VsamEx file: (The second and third combinations are functionally equivalent to

the first, but are slightly slower because all mode 2 reads must check for potential mode 3

updates.)

 __

11 Email: software_src@earthlink.net Internet: www.1-software-source.com 11

Software Source . PO Box 23306 . San Jose, CA 95153

INTRODUCTION File Access Modes

mode 0 (READ_ONLY) and mode 0 (READ_ONLY);

mode 0 (READ_ONLY) and mode 2 (READ_ONLY_SHARED);

mode 2 (READ_ONLY_SHARED) and mode 2 (READ_ONLY_SHARED);

mode 2 (READ_ONLY_SHARED) and mode 3 (READ_WRITE_SHARED);

mode 3 (READ_WRITE_SHARED) and mode 3 (READ_WRITE_SHARED);

... and exclusive access by a single process in mode 1 (READ_WRITE).

In the SHARED file access modes - mode 2 (READ_ONLY_SHARED), and mode 3

(READ_WRITE_SHARED) - VsamEx provides two forms of locking to coordinate

multiuser access: Automatic locking and VIS_BUSY, and VsamLock and VsamUnlock

semaphore functions.

 __

12 Email: software_src@earthlink.net Internet: www.1-software-source.com 12

Software Source . PO Box 23306 . San Jose, CA 95153

DATA ACCESS COORDINATION

Automatic Locking and VIS_BUSY

First, to preserve dataset integrity, VsamEx automatically coordinates all functions that

either change the dataset (VsamPut, VsamDelete, and VsamWriteDict) or read the dataset

(VsamGet, VsamReadDict, and VsamInfo). All these functions are designed to interact

without conflict in any combination, and to read or write consistent data.

Note that in mode 3, the VsamFlush function becomes a "no-op", since the updating

functions (VsamPut, VsamDelete, and VsamWriteDict) all perform an automatic

internal flush-to-disk.

VsamEx uses an intelligent step-wise locking scheme in these functions to deny access to

other processes for as short a time as possible. Nevertheless, pathological situations are

theoretically possible, in which a large number of network users simultaneously attempt

access to the same part of a file. Since it's impossible to predict how long a delay may be

required to gain access. All of these functions are designed to return VIS_BUSY, after

having passed through the step-wise locking process, if they continue to be blocked from

access.

» In the SHARED file access modes, you MUST write your code to accommodate the

possibility of a VIS_BUSY return from VsamPut, VsamGet, VsamDelete,

VsamWriteDict, VsamReadDict, and VsamInfo. The recommended technique is to

Sleep briefly and then try again. It is still possible get a VIS_BUSY return even if you've

bracketed your access with explicit VsamLock and VsamUnlock. The main reason for

this is that different records with different primary keys may exist in the same Group. If

they are each accessed and then both written by different applications (or threads) at the

same time, only one of the apps will momentarily receive permission to update the

group. While VsamEx minimizes this wait time, a large number of simultaneous writes

to the same Group may encounter situations where the wait time for permission queue

insertion exceeds the time-out values.

In some circumstances, these automatic locking mechanisms may be all you need. For

example, if a number of concurrent users simply add new records to the same dataset, your

application can just call VsamPut with the ADD_ONLY update mode, and then check for

a VIS_UPDATE_VIOLATION return code to see if another user had already added the

same record. Of course, you must still check for VIS_BUSY and retry if necessary.

 __

13 Email: software_src@earthlink.net Internet: www.1-software-source.com 13

Software Source . PO Box 23306 . San Jose, CA 95153

DATA ACCESS COORDINATION

Semaphores: VsamLock and VsamUnlock

Second, for explicit program control over multiuser access, VsamEx provides two

functions: VsamLock and VsamUnlock. These functions allow a process to post and

remove public notices (called semaphores) associated with a given dataset, that are visible

to other processes that have that dataset open.

» Caution: Despite its name, VsamLock does not directly prevent record access. Please

read the rest of this section for a complete description of the process.

You call VsamLock with only two arguments: the DatasetNumber& of an open dataset,

and a "lock string". The call is successful if and only if no other process currently holds a

lock on this particular string for this dataset.

Although most programmers will use primary index keys (i.e., record identifiers) as lock

strings, this isn't required; the lock string argument can be any text string, including the

null string. While most programmers use VsamLock and VsamUnlock to accomplish

record locking, these functions really provide a broader, more flexible type of inter-process

coordination. If you want to use VsamLock for record locking - to explicitly protect a

given record from change - then you should call it with that record's primary index key as

the lock string, and of course consistently follow lock/unlock conventions in your program

logic, as outlined in the example.

» Note: Since programmers commonly use primary index keys as lock strings for record

locking, VsamEx treats all lock strings case-insensitively, just as it treats index keys. For

example, "JonEs" and "jones" are considered identical. Similarly, VsamEx normalizes lock

strings in the same way it does index keys, trims leading and trailing spaces and compacts

multiple adjacent spaces to a single space. Lock strings must not exceed 255 bytes.

By itself, use of VsamLock with a primary index key does NOT PREVENT another

process from doing whatever it wants with that record. Instead, the intent is that you'll use

these semaphores as coordinated "program logic gateways" to COOPERATIVELY

SYNCHRONIZE access to sensitive operations.

 __

14 Email: software_src@earthlink.net Internet: www.1-software-source.com 14

Software Source . PO Box 23306 . San Jose, CA 95153

DATA ACCESS COORDINATION Semaphores

Suppose you want to examine an existing record and perhaps update it, depending on its

contents. Your coding outline might look like this classic example of record locking:

Step 1: Determine the primary key of the record and call VsamLock for this dataset with

the lock string set to that primary key. Examine the return code: If the function returned

VIS_ACCESS_DENIED, some other process interested in this record got to this step first;

wait . If the function returned VIS_OK, then we got here first for this record, and we can

proceed. Note that other processes might now be processing other records, but we don't

care; our record is "protected".)

Step 2: Call the VsamGet function to retrieve the record, and make your decisions about if

and how to update it. If you decide not to do any updating, go to step 4.

Step 3: Make your changes to the data and call VsamPut save the changes.

Step 4: Call VsamUnlock for this dataset on the lock-string you locked in step 1.

» Note: Standard technique in any multiuser locking design is to minimize the time that any

lock is held. If the decision-making stage of the above logic sequence involves user

interaction, then the step 1 logic should be rewritten to abandon this access with a user

message, rather than just wait; you don't want to keep someone hanging because someone

else went on a coffee break in the middle of a lock sequence. Likewise, applications should

not be coded such that locks are set and held while user input is required without timeouts.

The point of this example was that while your program was examining data in step 2, no

other process was changing that record (since, given that you got to it before they did, they

waited in their step one operation until you finished your step 4); when you did your step 3

updating, you could be confident that you were dealing with consistent data. Again, since

semaphore locks depend on consistent use, the above statement is true only if all programs

accessing the file use this same "gateway" logic. Because of the widely different criteria

used in applications, we leave this choice and responsibility up to the application

programmers.

 __

15 Email: software_src@earthlink.net Internet: www.1-software-source.com 15

Software Source . PO Box 23306 . San Jose, CA 95153

DATA ACCESS COORDINATION Semaphores

To consider a more interesting example, suppose your application always does record

access through lookups in a secondary index -- for example, a LastName index of an

employee file. Now, by locking the string "Smith", you could protect access to all the

Smiths (again assuming consistency of design in your application). This use of semaphores

is an example of "class locking", allowing you to protect access over a range of data in one

operation. More creative uses are certainly possible, including combinations of class locks

and record locks, and any other kind of processes that require brief rapid communication,

since these semaphores are generic network global signals.

VsamLock allows a given process to concurrently hold up to 32 different semaphore locks

on the same dataset. Most applications shouldn't require more than one or two.

If you want to implement a "file lock", establish the convention that some unique lock

string represents that meaning. The null string is a good choice, since index keys cannot be

null.

When a process closes a dataset with VsamClose, or ends (for any reason, including a

crash), the network operating system will automatically release all semaphore locks that

processes may not have unlocked.

VsamLock and VsamUnlock are designed for coordinating shared access updates, in

which several processes have the same dataset open in access mode 3,

READ_WRITE_SHARED (or perhaps a combination of modes 2 and 3). They will also

work, however, in modes 0 and 1. Syntax and usage follow.

 __

16 Email: software_src@earthlink.net Internet: www.1-software-source.com 16

Software Source . PO Box 23306 . San Jose, CA 95153

DATA ACCESS COORDINATION

General Notes on Locking

If process A wants to lock Smith and Jones (in that order) before proceeding, and process B

wants to lock Jones and Smith (in that order) before proceeding, there is a potential for a

logical problem commonly called a "deadly embrace", or "deadlock", if the timing sequence

is just right. In this example, if process A locks Smith, but then process B locks Jones,

neither process can proceed.

This is a universal problem not confined to VsamEx; the best way to avoid it is to unlock

all previous locks in reverse sequence and start over if you can't get a lock. Alternatively,

you may be able to design your logic to not require more than one concurrent lock within

the same category of lockable objects.

 __

17 Email: software_src@earthlink.net Internet: www.1-software-source.com 17

Software Source . PO Box 23306 . San Jose, CA 95153

DATA ACCESS COORDINATION

Index Pointer Positioning

Index pointers are process-local -- that is, each process with concurrent access to the same

dataset maintains its own set of VsamEx index pointers. Index pointer positioning is based

on key values, not record position. If, in a shared environment, you set an index pointer

to a certain point -- for example, in front of (not on) the first Smith -- and another process

adds more Smiths, you're still in front of the first Smith, even though that may be a

different Smith than it used to be. Similarly, if you call VsamEOF in an index and another

process adds a new last entry, you'll get that new last entry when you later call

VsamGet/XPREVIOUS. Each index pointer is separately maintained and independent of

other index pointers. Changing the index pointer position for one index does not change any

other index pointer positions, including the primary index pointer.

 __

18 Email: software_src@earthlink.net Internet: www.1-software-source.com 18

Software Source . PO Box 23306 . San Jose, CA 95153

FEATURES & DESIGN

Encryption

VsamEx supports full data encryption through the use of extended create and open

functions (VsamCreate & VsamOpen). An encryption key may be any arbitrary, variable

length string of characters, excluding character 0. Once a dataset is created using an

encryption key, it can only be opened, read and written using the same exact key that it was

created with. The encryption is done using a modified ultra high speed Secure Hashing

Algorithm (SHA). The cost in performance can vary depending on the record size and

group size. We have estimated it to be approximately 4% loss in performance when using

encryption.

The encryption/decryption is performed in such a way that VsamEx data moves from host

to client fully encrypted. This makes it very useful for moving data around any unsecured

network.

If you are unfortunate enough to loose track of any of your encrypting keys, the data

contained within an encrypted VsamEx dataset may not be retrievable*!!

YOU HAVE JUST COMMITTED “DATASIDE”!!

YOUR DATA JUST BIT[sic] THE DUST!!

YOU HAVE OFFICIALY CONTRIBUTED TO THE GREAT ENTROPIC HEAT

DEATH OF THE UNIVERSE!!

* Even we at Software Source, with our ultra fast quark computers and special

gluon grease, have found it necessary to travel back in time in order to recover

lost encryption data! So far, the only individual we know of that can afford

these services works at Microsoft!

 __

19 Email: software_src@earthlink.net Internet: www.1-software-source.com 19

Software Source . PO Box 23306 . San Jose, CA 95153

FEATURES & DESIGN Sparse Record Fields

Sparse Record Fields

The new low level VsamEx record format allows for “sparse record fields”. By this we

mean that not all records need have any or all of the fields defined in the dataset, e.g.

Record # 1 only contains fields 3 and 4, while #2 only fields 1 and 9. Records that do not

contain a field reserve zero (0) space for that field. When a record is read and a field is

fetched that does not contain the field requested, the function will return a

VIS_NOT_FOUND for that field.

When a dataset is created using VsamCreate, the old method of passing a record format

string that defines a homogeneous record set is no longer part of that process. Instead, there

is now a set of separate functions that are used to manage fields:

 VsamAddField

 VsamEnumAttribValues

 VsamEnumFieldAttrib

 VsamGetFieldAttribute

 VsamSetFieldAttribute

 VsamDeleteField

 VsamPurgeField

 (see API summary below or the VsamEx[treme] Programmers Reference)

There are certain default field attributes like Fnam, Fnum, Ftyp, Fwid, Fjst, Find, etc. that

are always available. The applications programmer may now add/delete/modify new fields

and attributes on the fly. Certain field attributes may not be modified such as “Fnum” and

“Ftyp” and there must always be a “Primary” field defined (at Create time) for the dataset.

While the default name for the primary is “Primary”, it may be changed by the application

software.

Once a field Type is set, it must remain consistent over all records. The only way to change

it is to delete the field and create a new one. Field Numbers are not intended to represent

relative field position in the record. They are only used internally to permanently identify a

field of a specific type. Its really the unique field ID. The way the new low level records are

constructed, fields may be attached to a record in any order.

 __

20 Email: software_src@earthlink.net Internet: www.1-software-source.com 20

Software Source . PO Box 23306 . San Jose, CA 95153

FEATURES & DESIGN

DATASET EXTENSIONS

The VsamCreate, VsamOpen & VsamKill functions accept Dataset names with extensions.

The first two characters of the extension passed will be used to construct the extensions of

related VsamEx files.

Example: “MyData.NEW” Would correspond to the VsamEx files ending with

“.NED”, “.NEM”, and “.NEL”. The last character identifies the

specific part, i.e. “D” is the Data, “M” is the Map, and “L” is the lock

file. If no extension is specified the defaults will be “.VOD”, “.VOM”

& “.VOL”.

NETWORK TUNING

Every computer running applications using VsamEx, may optionally have a parameter file

named VSAM.INI. The file contains adjustable parameters under the "[Options]" heading.

If VSAM.INI does not exist, LockRetries defaults to 255, TimeDelay defaults to 5, and

MinDelay defaults to 5. Since some values in the VSAM.INI file can cause VsamEx to run

slower, we recommend you do not create the file unless a dataset has many simultaneous

users and is experiencing major lock contention problems. A very small number of

installations need this file.

LockRetries is the number of times VsamEx will try to lock the map before returning

VIS_BUSY. Map locking is required in some circumstances to ensure data integrity and

consistency. It is then the responsibility of the application programmer to either try again or

take some other action.

 __

21 Email: software_src@earthlink.net Internet: www.1-software-source.com 21

Software Source . PO Box 23306 . San Jose, CA 95153

FEATURES & DESIGN

There is no wait if the lock is not busy. TimeDelay is the number of milliseconds to wait to

retry if the lock is busy. If the lock is still busy, the wait time of the next retry is cut in half.

This continues until the wait time reaches MinDelay milliseconds. All subsequent waits are

at least MinDelay milliseconds each, until the retry count is exhausted. Once a lock is

achieved, the retry time returns to the TimeDelay value. Larger values for TimeDelay tend

to reduce lock contention for some large networks (25 workstations +). For very high speed

(100>mhz Pentiums with PCI network cards) systems, the optimum value for TimeDelay

may be above 256 with MinDelay at 1. If you experience significant lock contention, as

evidenced by some systems never getting map lock access, experiment with larger values

for TimeDelay. The general rule to follow is:

Use the smallest values that work appropriately for your system! For applications with more

than 25 simultaneous users, we found the following values to work well:

[Options]

LockRetries=255

TimeDelay=256

MinDelay=1

DICTIONARY

VsamEx supports the concept of a dictionary. While VB/ISAM supported the Notes

feature with the VsamReadNote and VsamWriteNote functions, VsamEx only supports the

dictionary concept and will convert existing Notes to Dictionary records with a key prefix

of “-Notes-“. So, after a conversion, a note whose key was “VersionNumber” in VB/ISAM

will become “-Notes-VersionNumber” in VsamEx.

 __

22 Email: software_src@earthlink.net Internet: www.1-software-source.com 22

Software Source . PO Box 23306 . San Jose, CA 95153

FEATURES & DESIGN

The Dictionary section may contain any number of records and each record may be up to

64k bytes in length. The records are unstructured strings and may contain arbitrary binary

data. Each Dictionary record is identified with a Key string of up to 252 characters in

length. All dictionary entries are maintained in sorted sequence and the only valid ways to

read in the dictionary are XLOOKUP, XPREVIOUS and XNEXT. Data is always returned

with Dictionary reads. Dictionary records, unlike Notes, are stored in the main data file

(.isd). The only limit to the number of records is the maximum size of your data set, i.e.

you may have a dataset consisting entirely of Dict type elements (records).

A set of example code is provided at the end of the VsamWriteDict API definition.

NOTES

1. The underscore character “_” must be used with care if used in an index or

Primary. Odd behavior has been reported due to the following circumstance:

the letter “A” is hex 0x41 (0100 0001)

the letter “_” is hex 0x51 (0101 0001)

the letter “a” is hex 0x61 (0110 0001)

When testing keys for sequence, VsamEx uses functions that perform case insensitive string

compares. They do this by or-ing 0x20 with all “alpha” characters. This will convert

“A” to “a” but leave “_” unchanged. This means that even though the letter “A” is less

than “_”, which is less than “a” in true sort order, VsamEx will treat “A” and “a” as

greater than “_”.

 __

23 Email: software_src@earthlink.net Internet: www.1-software-source.com 23

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS API SUMMARY

Straightforward, simple API:

VsamCreate Creates a new, and empty, dataset.

VsamKill Deletes any dataset.

VsamFlush Called in non shared modes to flush the

last update to the disk.

VsamOpen Opens a dataset for access.

VsamClose Closes a dataset.

VsamPut Adds or rewrites a record.

VsamDelete Removes a record.

VsamGet Both maneuvers through an index -- using

Lookup, Next, Previous, and Current

modifiers -- and optionally retrieves the

data record.

VsamFreeRec Free the Memory buffer allocated by a

VsamGet.

VsamBOF Positions to the beginning of an index.

VsamEOF Positions to the end of an index.

VsamMovePtr Re-position a virtual index pointer.

VsamCancel Used to cancel any secondary operation

such as VsamMovePtr.

 __

24 Email: software_src@earthlink.net Internet: www.1-software-source.com 24

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS API SUMMARY

VsamWriteDict Write a record to dictionary portion of the

dataset.

VsamReadDict Read a record from dictionary portion of

database.

VsamDeleteDict delete a record from dictionary portion of dataset.

VsamSetDictBof Move dictionary record pointer to BOF.

VsamSetDictEof Move dictionary record pointer to EOF.

VsamSearch Create a flat file or DynaSet of records.

VsamInfo Retrieve database status information.

VsamLock Lock a text Semaphore in the database.

VsamUnlock Unlock a text Semaphore in the database.

VsamAddField

Dynamically adds a new record field to an

existing dataset.

VsamEnumAttribValues

Returns a comma delimited string containing a

list of all the values for the specified field

attribute.

 __

25 Email: software_src@earthlink.net Internet: www.1-software-source.com 25

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS API SUMMARY

VsamEnumFieldAttrib

Returns a comma delimited string containing a

list of all field attributes currently defined for

this field.

VsamGetFieldAttribute Read the value of a named field attribute.

VsamSetFieldAttribute Set the value of a Field attribute or add a new

attribute.

VsamDeleteField Flags a field as having been removed from the

dataset. As records are added/updated in the

dataset, this field is no longer added. Calls to store

field will return an error for this field definition.

VsamStoreField Store data into a record field.

VsamFetchField Fetch data from a record field.

VsamVal Rapidly validate a dataset

VsamRebuild Construct a new Dataset, salvages all primary

records, re-indexes them, and compacts the dataset

to its Minimum size.

Please See the VsamEx[treme] Reference manual for detailed function descriptions.

 __

26 Email: software_src@earthlink.net Internet: www.1-software-source.com 26

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS RECORDS, KEYS, & INDEXES

RECORDS, KEYS, & INDEXES

Records and fields: The Fundamental unit of a VsamEx file access is a "record." The

VsamPut function writes a file record from the contents of a record buffer (GSTR) in your

program, and the VsamGet function reads a record from the file into a similar (or the same)

record buffer. Each "field" in a record may be one of the basic numerical data types that

are 2 bytes, 4 bytes and 8 bytes in length. Additionally, string fields may be defined that are

variable length and may contain any kind of binary data, not just text – all within the

record-size maximum of 64KB.)

Primary Keys: You must supply a "primary key" with every record you write. Primary

keys are strings (variable-length - max 252 bytes) that uniquely identify the associated

record in the file; if you try to write a new record with the same primary key as a record

already in the file, VsamEx will replace the old record with the new one - although you can

protect yourself from doing this inadvertently by using the XADD_ONLY modifier.

Likewise the application may limit the update with XREPLACE_ONLY. The default is

both add and replace. All of the Primary keys together are called the primary index. The

Primary Key is considered to be record field number 0 and the Primary index is index 0.

The VsamCreate function will automatically create the “Primary” field definition to

initialize the Data Definitions. It is always Indexed. Its name may be changed but its field

number (0) and Indexed status (“T”) can not be changed.

All subsequent Field definitions are created by calling VsamAddField. Each field defined

has several sets of attributes that are Predefined (see the Programmers Reference) and

others that the user may add using the VsamSetFieldAttribute function. All attribute

values for all fields are stored in a special dictionary record in the database and therefore its

size is limited to 64k bytes. So if you create fields that have attributes totaling 1000 bytes

each, you may only have room in this record for a maximum of 64 fields.

Secondary Keys and Indexes: After you create a VsamEx file, you define additional

fields by executing the VsamAddField function. Secondary keys, sometimes referred to as

cross-reference keys, are the contents of string fields that have the “Index” attribute in its

field definition set to “Y”. The indexed attribute may only be set to “Y” within the first

150 fields defined. Each “Indexed” field will affect overall performance when writing

records. The more Indexes, the more time is required to update since each will cause a disk

write.

 __

27 Email: software_src@earthlink.net Internet: www.1-software-source.com 27

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS RECORDS, KEYS, & INDEXES

Duplicate Keys: In contrast to primary keys, the keys in a secondary index need not be

unique. For example, if you have a LastName Index for an employee file, you may have

several "Smiths". We call these "duplicate keys". Duplicate-key entries in a secondary

index are ordered in ascending primary-key order. For example, if the primary key is

SocialSecurityNumber, the first "Smith" in the LastName index will be the one with the

lowest-sorting Social Security Number.

Sparse indexes: Every record needn't be represented in every secondary index; in other

words, not all fields need to be present in all records. This gives you a "sparse" (or

"occasional") index capability, so you can keep quickly traversed, small lists of various

kinds of "special" records. (This is also the only practical way to approach lots of indexes

in a given record; even for VsamEx, updating so many indexes when you write or delete

such a record would take a lot of time.)

You may not, by the way, write the null string for a primary key.

More About Keys

Maximum Key Lengths: Although all secondary index keys can be variable length

strings, the maximum key length of the lowest level binary record is 253 bytes. The length

of the primary key plus the length of the secondary field used to form an index key must be

less than or equal to 252 characters. For instance, if you had a 50-byte primary key, the

largest maximum secondary you could store would be 202 bytes. For the fastest access

with large files, keep your keys short, especially the primary.

 __

28 Email: software_src@earthlink.net Internet: www.1-software-source.com 28

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS RECORDS, KEYS, & INDEXES

Case-insensitive Keys: VsamEx protects your dataset from keyboard-error sequencing

and duplication problems by treating upper- and lower-case letters as identical when

comparing keys; thus "Jones" and "jones" are considered identical. If they're primary keys,

only one of them can therefore exist in the dataset. Specifically, VsamEx doesn't convert

characters, but sorts and compares upper-case letters as if they were lower-case: ASCII 65

is treated the same as ASCII 97.

Key Normalization: Another form of error protection is the normalization of keys:

VsamEx trims leading and trailing spaces from the internal representation of keys.

Furthermore, it collapses any multiple embedded spaces into a single space (VsamEx

leaves the actual data fields alone.) VsamEx also normalizes key-search function

parameters, such as the Selector parameter in VsamGet/Lookup. In this way, a lookup on

A-B-space-C will successfully find a key that was originality entered as, for example, A-B-

Space-Space-C (and vice-versa).

Numeric keys: All key comparisons and sequencing operations use string (not numeric)

compares, so be careful if your keys are string conversions of numbers -- "10" sorts lower

than "9". (For proper sorting, such keys, use fixed-length, right-justified, zero-filled

numbers: "00009", "00010", etc.)

Forbidden Characters: You can't put any NULL (binary zero) or Control-A (binary one)

characters into a key; VsamEx will detect them and tell your mother.

 __

29 Email: software_src@earthlink.net Internet: www.1-software-source.com 29

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS More About Keys

Compound Keys: If you like, you can think of each index as providing a "virtual sorting"

of the records in a file. For instance, sequentially traversing a LastName index in an

employee file is like reading a version of the file in which the records are sorted in last-

name order. Just as traditional sort programs allow sorting on hierarchy of several "sort-

keys" -- so that, for example, you could sort your employee records by date-of-hire within

department -- you can create "compound" index keys that achieve the same effect in the

virtual sorting of a VsamEx index.

To follow the above example, you'd design your records with an extra Field whose type

would be “C5.3:6.10”. VsamAddField would construct a virtual field (it does not really

exist in the record) and an index by concatenating department-name (real field 5 for length

of 3 - on the left) and date-of-hire (real field 6 for a length of 10 - on the right). Internally,

VsamEx will separated each concatenated field with a system delimiter and collapse

multiple embedded spaces to a single space in its internal representations of the index. The

specified lengths are only maximums and are used to limit the amount of data extracted

from the beginning of the specified real fields to form the compound. If the string field

contains less than the specified maximum, the smaller number of characters are still used in

the compound. If no limit is specified, all of the data is taken up to the total key length of

252. If the total length of the compound key (including separators) exceeds the 252

character maximum, an error will be returned.

 __

30 Email: software_src@earthlink.net Internet: www.1-software-source.com 30

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS Using Indexes

USING INDEXES

While a dataset is open, VsamEx maintains separate pointers into every index, including

the primary index.

All record access takes place through the pointer into a selected index. When you want to

read a record (which means using the VsamGet function), first decide which index to use.

When you're dealing with a given index, the pointers into the other indexes don't move. If

you switch to a different index, VsamEx "remembers your place" in the index you had

been using. Furthermore, we only use the pointers for reading, so you can add, change, and

delete records without losing your place in the indexes.

You can visualize the indexes as separate Rolodex files, and the pointers as paper clips that

mark your position (one paper clip per Rolodex). A pointer can be on an entry (attached to

a specific card) or between entries, i.e., where a particular entry should be, but was not

found.

There are also two special positions: before the first index entry (called "BOF," although

really at the "Beginning of Index," not "Beginning of File"); or after the last entry (at

"EOF"). VsamEx includes two special functions, VsamBOF, and VsamEOF, to move the

pointer of a selected index to either of these two positions; also, when you first open a

VsamEx dataset, all the pointers are set to BOF. Note that if an index is empty, BOF, and

EOF are equivalent -- in a place only Zen masters can visualize.

Besides VsamBOF and VsamEOF, all pointer movement happens through use of the

VsamGet, and the VsamMovePtr functions. There are two distinct phases to VsamGet:

first, it moves the pointer in a selected index; second (and optionally), it reads the first

record associated with the index entry under the just-moved pointer, only if that pointer

movement ended up on (attached to) an entry. On the other hand, the VsamMovePtr

function moves the pointer relative to the current position, either forward or backward by a

specified number of records. This is accomplished at a very low level in VsamEx and is

lightning fast.

 __

31 Email: software_src@earthlink.net Internet: www.1-software-source.com 31

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS Using indexes

VsamGet pointer movement, in turn happens in one of two distinct ways, depending on

you specifications of an access mode parameter:

In Lookup access mode, VsamGet searches the index for an entry (key) that matches your

Selector parameter. If it finds a match, it relocates the pointer to that entry. (This is the

standard way to read a record "randomly" -- that is, by Key-match in a selected index.)

If it doesn't find a match, VsamGet/Lookup will still move the pointer -- to where that

entry would have been if it we there; you can think of the pointer as coming to rest on a

"phantom entry" that matches your Selector parameter. (This is called the "insertion point,"

since it's where a new entry with that value would be inserted.) This is an extremely useful

process, as we'll see shortly.

The other three VsamGet access modes are "stepping" processes-that is, to move the

pointer one "step" from wherever it had been. VsamGet/Next steps forward to the next

entry; VsamGet/Previous steps backwards to the previous entry; and VsamGet/Current

doesn't move the pointer at all so you can re-read the record.

Since all indexes are always kept sorted, you can read an entire file in any of several sort

sequences by starting at BOF in an index and then looping on a call to VsamGet/Next (in

that same index). you can do the same thing in reverse sequence using EOF and

VsamGet/Previous.

If you're moving forwards in an index with a VsamGet/Next call, and try to do a read

beyond the last entry, you'll get a "VIS_NOT_FOUND" return-code; you're at EOF, and

subsequent VsamGet/Previous call will read the last entry.

If you're moving backwards in an index with a VsamGet/Previous call, and try to read

before the first entry, you'll get a " VIS_NOT_FOUND " return-code; you're at BOF, and a

subsequent VsamGet/Next call will read the first entry.

A " VIS_NOT_FOUND " return-code from a VsamGet/Current call tells you that you're

either between entries, at BOF or at EOF.

 __

32 Email: software_src@earthlink.net Internet: www.1-software-source.com 32

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS Using indexes

To illustrate, let's suppose you have a file of three records, keyed with letters of the alphabet

B, D, and E. The following demonstrates what happens when you do a record read

(VsamGet) with various lookup keys. The Previous, Current, and Next columns show

which record would be read (or that a not found condition would be returned) on a

subsequent call -- after the read -- to VsamGet/Previous, VsamGet/Next,

VsamGet/Current, respectively.

 Lookup Index pointer Return Code Results of a subsequent:

 key in file =  LookUp Previous Current Next

 B D E

 

 A BOF before first entry not found not found not found B

 B D E

 

 B at B OK not found B D

 B D E

 

 Cbetween B and D not found B not found D

 B D E

 

 D at D OK B D E

 B D E

 

 E at E OK D E not found

 B D E

 

 F after last entry EOF not found E not found not found

 __

33 Email: software_src@earthlink.net Internet: www.1-software-source.com 33

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS Using indexes

The Several VsamGet access modes are designed to be used together. In particular, this

applies to Lookup and Next: Suppose you have a file of employee records with a LastName

index, and you want to read all Smiths. This is a simple two-stage process: First, does a

Lookup in the LastName index on "Smith." This will retrieve the first of potentially several

Smiths (if it's successful; if it isn't, you don't have any Smiths, and you can stop). Second,

loop on a call to VsamGet/Next in that same index, and keeps retrieving records until you

go beyond the last Smith. (There's a coding illustration of this in the VsamGet function

description.)

Now, recall the part about an "unsuccessful" VsamGet/Lookup, which doesn't find a match

but relocates the pointer to a specific insertion point. Suppose you want to read all

employee records with LastName beginning with the letters "Sm". Again, this is a two-

stage process: First, do a Lookup in the LastName index on "Sm". You don't expect this

call to report success (if it does, you have and employee whose last name is "Sm"). But it

will position that pointer to the insertion point for "Sm". Then, loop on a call to

VsamGet/Next in that name index, and keep retrieving records until you go beyond the last

employee whose name begins with "Sm" (if there are any). (This is illustrated in the

VsamGet function description.)

* There's a simple principle of alphabetic filing that's absolutely critical to understanding

the last paragraph: Think of the insertion point for "Sm" as a "phantom" index entry.

Such an entry would be filed immediately before all other entries that begin with the letters

"Sm"--right? Now, please re-read the previous paragraph.

VsamGet includes yet another parameter to help you with loop control in the Next and

Previous modes, but that's secondary to the main subject.

Now, here are some interesting subtleties about pointer positioning, just in case you're

getting bored. You can skip this part if you want, but it might come in handy if you're

going to do certain kinds of fancy index maneuvering. It's all consistent, however, with the

rest of the design. Trust me. (I'm a doctor.)

Suppose you do a VsamGet/Lookup, in a LastName index, for "Smith," and there isn't a

Smith entry. As you know, the function will return "not found," and the pointer will be left

positioned appropriately at the insertion point for Smith in the index, in the sequence where

a Smith would be inserted. If you were to now do a VsamGet/Current call, it would, of

 __

34 Email: software_src@earthlink.net Internet: www.1-software-source.com 34

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS Using indexes

course, also return "not found," since you're not on an entry. What may not be obvious is

that this specific process -- an unsuccessful Lookup –leaves the pointer "primed" for that

lookup key: if you now add the new entry Smith to the index, a subsequent

VsamGet/Current call would reveal that the pointer had barked happily as soon as it saw

the “Smith” record come in, and had wrapped its little paws tightly around it. Things are

different once a pointer is actually attached to an index entry. No matter how the pointer

landed on that entry -- by successful Lookup, by step-movement with either Next or

Previous, or by the scenario described above -- once the pointer is attached, it gets

"imprinted" to that entry, like a baby duck. (I know, ducks don't have paws but some

programmers do!)

If, in our standard example, the LastName pointer were attached to the entry "Brown" and

you then deleted the corresponding record - say with Social Security Number 111-22-3333

(our primary key in this example) - the pointer would again be primed; unlike the previous

example, however, now the pointer would be primed for a specific entry; the Brown with

primary key 11-22-3333, on which it had imprinted. If you re-add the same Brown back

into the file, the LastName index pointer will indeed re-attach to his LastName entry -- but

to no other Brown.

If you were instead, to add a Brown entry with a lower-sorting Social Security Number, it

would be inserted above the pointer (closer to BOF, and Locatable with a

VsamGet/Previous); if you were to add a Brown entry with a higher sorting Social Security

Number, it would be inserted below the pointer (closer to EOF, and locatable with a

VsamGet/Next).

The Two different kinds of "pointer priming" -- one is indiscriminate, and the other specific

-- actually make sense, and correspond to what your program logic would expect. In the

First case, your Lookup intended to find the first of (potentially) several Smiths; the pointer

ended up positioned after everything earlier than "Smith," and when a Smith came along,

VsamEx gave it to you. (We aim to please.) In the second case, if you snatch a record away

then immediately sneak it back in, things ought to look the same afterwards. In accordance

with the Law of Universal Stupefaction, “Things that are not changed, are not changed!”

In the interim, it wouldn't have made sense to arbitrarily reattach the pointer to a preceding

or a following Brown. Were would you be then - to do a VsamGet/Current, you'd end up

processing the wrong record.

 __

35 Email: software_src@earthlink.net Internet: www.1-software-source.com 35

Software Source . PO Box 23306 . San Jose, CA 95153

FUNDAMENTALS Using indexes

While all of this might seem a bit tedious and confusing, it actually flows quite naturally

from the Dictum of Defensive Design, which asks the familiar question: "How else would

you have done it?"

Support Functions

VsamEx[treme] support functions are: (see the reference manual for a complete

description)

 VsamVal(lpDbName, lpLogBuf, Options, lpGcount, lpeKey)

 VsamMakeMap(lpDbName, lpGcount, lpeKey)

 VsamRebuild(lpDbName, lpLogBuf, Options, lpPhase, lpGcount, LpLicense, lpeKey)

Once called, these functions will not return until complete. However:

In Windows they run with a message pump so other parts of the application will still

function. The Gcount Variable, pointed to by the parameter lpGcount, is updated so other

parts of the app can examine its progress.

In Linux, you should start another thread to run it if you want your current process to

continue operating until the function call completes.

The DWORDs whose addresses are passed in parameters as lpPhase & lpGcount will

continually change and are updated in real time. So, you may want to start the rebuild on its

own thread. In Windows it runs with a message pump and threading is not mandatory.

Remember, VsamRebuild will open the dataset in exclusive mode until it is complete. Once

it starts however, it is complete only when the function returns to the calling process. If a

secondary thread (or in a Windows Message Process or thread) calls the function again with

Options = -1, this will signal the running process to stop! The running process will return

immediately and at this point the rebuild process is incomplete! However, all of the original

files in the dataset are untouched. VsamMakeMap, of course, is so fast that it does not end

this way. The maximum number of reads it will perform is 65530 (one for each group).

NOTE: We do not recommend running any of the support functions remotely. For performance reasons, they should only be

run on the computer where the data resides. If your datasets are small to medium this is not as much of an issue.

02-14-2007

